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UNDERSTANDING MACHINE LEARNING

» We know (among others):

& Neural networks are universal approximators (Cybenko’89).

& The optimisation problem is NP-hard (e.g. Blum, Rivest’89).

» We do not know (among others):

For instance, there are many important questions regarding neural networks
which are largely unanswered. There seem to be conflicting stories regarding the

following issues:

m Why don’t heavily parameterized neural networks overfit the data?

m What is the effective number of parameters?
m Why doesn’t backpropagation head for a poor local minima?

From “Reflections after refereeing papers for NIPS”, Leo Breiman

Still not answered!
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SAMPLE COMPLEXITY

How many training samples are needed for a given task? Are we close
to the minimum? If not, is it because of architectures or algorithms?
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which are largely unanswered. There seem to be conflicting stories regarding the

following issues:
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IN DEEP LEARNING

e Empirical observation: Global
minima with bad generalisation

error do eXi St. Bad Global Minima Exist and SGD Can Reach Them

Shengchao Liu, Dimitris Papailiopoulos Dimitris Achlioptas
University of Wisconsin—-Madison University of California, Santa Cruz

Question: How do gradient-based
Abstract
al g O rlth m S m a n ag e t O aVO 1 d b a d Several recent works have aimed to explain why severely overparameterized models,

generalize well when trained by Stochastic Gradient Descent (SGD). The emergent

° ° ° ° ° consensus explanation has two parts: the first is that there are “no bad local
mlnlm a Wlth llmlte d nu mb er Of minima”, while the second is that SGD performs implicit regularization by having
a bias towards low complexity models. We revisit both of these ideas in the context

of image classification with common deep neural network architectures. Our first

finding is that there exist bad global minima, i.e., models that fit the training set

S amples ? perfectly, yet have poor generalization. Our second finding is that given only
? unlabeled training data, we can easily construct initializations that will cause SGD

to quickly converge to such bad global minima. For example, on CIFAR, CINIC10,

and (Restricted) ImageNet, this can be achieved by starting SGD at a model derived

by fitting random labels on the training data: while subsequent SGD training (with

the correct labels) will reach zero training error, the resulting model will exhibit

a test accuracy degradation of up to 40% compared to training from a random

Literature: Ne-pae-minmer inatain. il vecho hat plaraion s 0 provie SO i o
Impli Cit regul ari - atio - Le arning complex model (adversarial initialization) has no effect on the test accuracy.
simple functions first. Etc.

No really satisfactory answer yet.
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GOAL

Analyse generalisation properties of gradient-based algorithms in
non-convex high-dimensional setting at low sample complexity.

Key points:
e non-convex

e high-dimensional

e low sample complexity

Next: A setting where this can be done.




TEACHER-STUDENT SETTING

Teacher-network Student-network

Generates data X, n samples of d
dimensional data, e.g. random input
vectors.

e Observes X, y, the architecture of the
network.

e How does the best achievable test
error depend on the number of
samples n?

Generates weights w*, e.g. iid random.

Generates labels y.

teacher-weights student-weights

data / data /
- labels N labels
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TEACHER-STUDENT PERCEPTRON

J. Phys. A: Math. Gen. 22 (1989) 1983-1994. Printed in the UK

1989

Three unfinished works on the optimal storage capacity

of networks data

X weights
E Gardner and B Derrida W

The Institute for Advanced Studies, The Hebrew University of Jerusalem, Jerusalem, Israel l b 1
and Service de Physique Théorique de Saclayt, F-91191 Gif-sur-Yvette Cedex, France apels
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Abstract. The optimal storage properties of three different neural network models are
studied. For two of these models the architecture of the network is a perceptron with =J
interactions, whereas for the third model the output can be an arbitrary function of the
inputs. Analytic bounds and numerical estimates of the optimal capacities and of the
minimal fraction of errors are obtained for the first two models. The third model can be
soived exactly and the exact solution is compared to the bounds and to the results of
numerical simulations used for the two other models,
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BAYES-OPTIMAL PREDICTION

Posterior probability distribution:

1 d n
PwiyX) =7 Ewai)ng(yﬂ X, - w)

where P, (y,|X,-w) =60y, — p(X, - w))

R

/// pot s
|
|

> A new sample Xuew 1S given. Bayes-optimal prediction of |
F a new label: Ynew = =P(wly,X) [CD(XHGW ' W)]




BAYES VS RISK MINIMISATION

e Bayes-optimal estimation = marginals of the
posterior:

1 L -
P |3 X) = o EPWWQEPm@ﬂ X, - w)

e More common in ML: Empirical risk minimisation =
minimisation of a loss function:

n
minw[z 0y, X, - w) & /IHWH%]
g1
e.g. square loss £(y,z) = (y — z)z, logistic loss £(y, z) = log,(1 + ™)




BAYES-OPTIMAL PERFORMANCE

Barbier, Krzakala, Macris, Miolane, LZ arXiv:1708.03395, COLT’18, PNAS’19

|
Def. “quenched” free energy: f= C}Eilo E[Ey,X log Z(y, X)

Theorem 1:

f =supinf frs(m,m)

Va\

: - mini
Jrs(m, m) = @p (m) + adp (m;p) >

where

®, (i) = E,,, [ln _w( emwwoﬂ/%wz—mwz/z):

®p (m;p)=E,, depout(y [Vmy + /p = m)InEdPy (v [\/my + \/p — m&)]]

w,wy~ P, zv, &~ N(0,1) p=Ep W




BAYES-OPTIMAL PERFORMANCE

Barbier, Krzakala, Macris, Miolane, LZ arXiv:1708.03395, COLT’18, PNAS’19

|
Def. “quenched” free energy: f= C}Eilo EIEy,X log Z(y, X)

Theorem 1:

f =supinf frs(m,m)

Va\

: - mini
Jrs(m, m) = @p (m) + adp (m;p) >

Theorem 2: Optimal generalisation error

gtest — Ly r [¢(\/;v)2] 2 [(,0< V m*v + \/p = m*z)]z
P = [EPW(WZ)
v,z ~ N(0,1)
L~ by

where m* is the extremizer of frg




SPHERICAL PERCEPTRON

test error

Data generated as:

X, ~ H(0,1) iid

d
yﬂ:Sign<2Xuin’*> P = 0.1
=i

Yk

optimal
AMP algorithm @ _
logistic regression = o= 0

d = o0
n/d = (1)
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APPROXIMATE MESSAGE PASSING

Thouless-Anderson-Palmer’76, Mezard 89, Donoho, Maleki, Montanari’'o9, Rangan’10

P()ut(y'u |X/,¢ 5 W)

Belief Propagation

1
m;_,(w) = —P,w) [ [m,_iw)

Sip y#u

Pout(y,u | Z X,ulwl)
[

The d-dimensional integral in BP is algorithmically intractable, but simplifies ...




Algorithm 2 Generalized Approximate Message Passing (G-AMP)

Input: y
Initialize: a° v9, t = 1 qut.,u
repeat

AMP Update of wy, V),

AMP Update of Y;, R; and gout

E,f Z i wgout ;u Yus Vt)

1 1\—1
Rf — aﬁ + (Zf+ Z Xp,z'gout (wfp Yus V;f)
I

AMP Update of the estimated marginals a;, v;

a§+1 — fa(ziaRg_i-l,)
1 1
o e (S, R
t—t+1
until Convergence on a,v
output: a,v.

Variances and means
of the pre-activations

Simple to implement, only
matrix multiplications, O(d2)

fv(zv R) — EaRfa(Za R) .

f dzPout(y|2) (z —w) e 2v

Jout (w, Y, V)
VfdzPout(y|z)e_




Algorithm 2 Generalized Approximate Message Passing (G-AMP)
Input: y
Initialize: a° V", t =1 gg,; ,
repeat
AMP Update of wy, V),

2  t—1 -
= ZX/“ Vi Variances and means
- Z Xal~! — Vighe] of the pre-activations

AMP Update of Y;, R; and gout

—1
Ef Z i wgout N’ Yus Vt)

1 1\—1
Rf — CLE + (2:+ Z Xuigout (wfu Yus V;f)
I

AMP Update of the estimated marginals a;, v;

a§+1 — fa(ziaR?{-l,)
W e (S R

Simple to implement, only
P, matrix multiplications, O(d2)

until Convergence on a,v
output: a,v.

Bayes-optimal prediction: | ynew = W / dz dy yPout(y|z)
T




STATE EVOLUTION

Bayati, Montanari'i1, Bayati, Lelarge, Montanari’12, Javanmard, Montanari’13.

Define: : g then MSE({t) =p—m'

mt in the AMP algorithm evolves as:
m't! = 20n¢l(I)Pw(nA1t)

mt o QO{am@Pout (mt; /0)

Recall the RS free energy

Va\

Jrs(m, m) = @p () + adp (m; p) >




COROLLARY

Jrs(m, m) = ®©p (m) + a®p (m;p)

out

frs(m) = infy frs(m, m)
e MMSE is given by the global maximum of the free entropy.

e AMP-MSE given by the local maximum of the free entropy
reached starting from small m/large MSE.

>

MMSE = p — argmax frg(m)

free entropy

MSEamp = p — mamp

argmax frs(m)




SPHERICAL PERCEPTRON

Data generated as: X, ~ /#(0,1) 1d

d
= sign( ZXWW,*) P = 00:1)
i=1
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optimal
AMP algorithm @ _
logistic regression = o= 0

d = o0
nld = O(1)
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BAYES VS LOGISTIC REGRESSION

Aubin, Krzakala, Lu, LZ; NeurIPS’20, arXiv:2006.06560

Data generated as: X,; ~ #(0,1) iid P« =/ (0,1)

Rademacher bound
| optimal

test error

logistic regression xxxxx
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ANOTHER EXAMPLE OF
THE TEACHER-STUDENT SETTING

(NON-CONVEX THIS TIME)




PHASE RETRIEVAL

e Broad range of applications in signal processing and imaging.

e Teacher-student setting with teacher having no hidden units,
teacher’s activation function is the absolute value.

X~ NO,1/d)  wE~H0,])

d
. o
yu_ ZXmWi
i=1

Phase/sign retrieval: Regression from training data (X, v}, _,




OPTIMAL PHASE RETRIEVAL

Barbier, Krzakala, Macris, Miolane, LZ arXiv:1708.03395, COLT’18, PNAS’19
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o = 1 # of samples needed for perfect generalisation for any algorithm.

— 1.13 # of samples needed for perfect generalisation for approximate message
AAMP - : : ; : i
passing algorithm (conjectured optimal among efficient* ones).
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PHYSICS VS LEARNING

liquid supercooled liquid

impossible computationally hard possible

possible

Mean Squared Error

impossible




Presence of the hard phase signals hurdles for §
t gradient-based algorithms including Langevin. |

PHYSICAL REVIEW X

Highlights Recent Subjects Accepted Collections Authors Referees Search Press

Glassy Nature of the Hard Phase in Inference Problems

Fabrizio Antenucci, Silvio Franz, Pierfrancesco Urbani, and Lenka Zdeborova
Phys. Rev. X 9, 011020 — Published 31 January 2019

Article References Citing Articles (7) ﬂ HTML

An algorithmically hard phase is described in a range of inference problems: Even if the signal can be
reconstructed with a small error from an information-theoretic point of view, known algorithms fail
unless the noise-to-signal ratio is sufficiently small. This hard phase is typically understood as a
metastable branch of the dynamical evolution of message-passing algorithms. In this work, we study
the metastabhle branch for a nrototvnical inference nroblem. the low-rank matrix factorization. that




EMPIRICAL RISK MINIMIZATION FOR PHASE RETRIEVAL

4 2

. 2
Loss function: g({wi}li?:l — Z [yi - X,uiwi) ]

=1 i

d
where y,=|) X w
=

Gradient flow: wi) = —0,Z ({Wj(f) }JC-Z=1) + u(®wi?)

T

ensuring ||w||% — U

Initialisation: w;(0) ~ A#(0,1)

A non-convex optimisation problem.




PERFORMANCE OF GRADIENT DESCENT

Number of samples to reach zero test error in phase retrieval:

Chen, Chi, Fan, Ma’19
Cai, Huang, Li, Wang’21

1 1.13 C poly(log d)

_—

IT AMP i
’\ d

Barbier, Krzakala, Macris, Miolane, LZ, arXiv:1708.03395, COLT 18, PNAS’19
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GRADIENT DESCENT NUMERICALLY

Sarao Mannelli, Biroli, Cammarota, Krzakala, LZ, NeurIPS 2020, 2006.06997.

N=d

1 —— N=4096
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PERFORMANCE OF GRADIENT DESCENT

Closing the gap between GD and AMP?

Chen, Chi, Fan, Ma’19
Cai, Huang, Li, Wang’21

~7 ( poly(log d)

GD numerics




RECAP SO FAR

Two simple teacher-student examples:

e Spherical perceptron ERM close to Bayes-optimal.

1

" Optimal'and SE —
0.8 | AMP, N=107 e
: Logistic,N=10 u

0.6

04 t

0.2
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e Phase retrieval ERM way worse than Bayes-optimal.

Chen, Chi, Fan, Ma’19
> Cai, Huang, Li, Wang’21

~7 C poly(log d)

I I I
I | |

>
GD numerics e ﬁ
d




WHAT IS MISSING?

DEEP LEARNING IS

OVER-PARAMETRIZED




OVER-PARAMETRIZED ERM FOR PHASE RETRIEVAL

Loss function: 3({wm}la 1)—2[ ——2 2 ui la ]2

u=1

X where y, =

Wide (m>d) over-parametrised
two-layer neural network

Gradient flow: W, () = -0, Z <{ Wip(1) }] e 1)
Initialisation:  w;,(0) ~ A (0,1)




OVER-PARAMETRISED LANDSPACE

Sarao Mannelli, Vanden-Eijnden, LZ, NeurIPS’20, 2006.15459

Theorem 3.1 (Single unit teacher). Consider a teacher with m* =1 and a student with m > d hidden
units respectively, so that A* has rank 1 and A has full rank. Given a data set {xy}}_, with each x}, € R¢
drawn independently from a standard Gaussian, denote by M,, 5 the set of minimizer of the empirical loss
constructed with {xy}r_, over symmetric positive semidefinite matrices A, i.e.

Mpda= {A = AT positive semidefinite such that E,(A) = 0} : (10)
Set n = |ad| fora>1 and let d — 0o. Then

lim P (Mjaqa # {4°}) =1 ifa€[0,2 (11)

whereas

lim P (Magpa={4"}) >0  ifac(20) (12)

d—oo

1 = *k 1 m* Xk *k
At) = - Zwi(t)wf(t), A" = - sz‘ (w))",




GD FOR OVER-PARAMETRISED PHASE RETRIEVAL

Sarao Mannelli, Vanden-Eijnden, LZ, NeurIPS’20, 2006.15459

Theorem 4.1. Let {w;(t)}*, be the solution to (3) for the initial data {w;(0)}*,. Assume that m > d
and each w;(0) is drawn independently from a distribution that is absolutely continuous with respect to the

Lebesque measure on R%. Then

1 m
~ ng"’('w;’o)T as t— oo (15)

1=1

R R SR _
A_mizzlwz(t)'wz- (t) = A =

and A s a global minimizer of the empirical loss, i.e.

Ep(Aw) = 2Ln(w, ...

o
[ee]
1

1 — P of failure
o ©
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1 1
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PERFORMANCE OF GRADIENT DESCENT

Sarao Mannelli, Vanden-Eijnden, LZ, NeurIPS’20, 2006.15459

Over-parametrised neural networks trained by gradient descent
need fewer samples to learn phase retrieval

Chen, Chi, Fan, Ma’19
Cai, Huang, Li, Wang’21

1 113 ~7 C poly(log d)

T e — e

IT AMP GD in an over- GD numerics
parametrised network




WHAT IS MISSING?

DEEP LEARNING USES

STOCHASTIC
GRADIENT DESCENT




PERSISTENT SGD

Mignaco, Urbani, Krzakala, LZ, NeurIPS 2020, 2006.06098

w, (1) = w, 0 = 0[50, 0 + Y, 5,00, 0, X, )|
1=
SGD o Persistent-SGD‘ -

n PERSISTENCE TIME
=T). Prob (Sﬂ (t 1 '7) —l |s/4 () = O) ? of each sample
Su (1) = e

b
Prob (s” (t+n) =0]s, ()= 1) S i

DISCRETE-TIME STOCHASTIC PROCESS WELL-DEFINED CONTINUOUS LIMIT

stochastic gradient flow,n — 0O

Wi (1) = = 20w () — ) 5,000,200 X,,, b))
=l
d,n - oo atfixed a =n/d,b,t batch size: bn,0 < b < |

—




DYNAMICAL MEAN-FIELD THEORY

(Mézard, Parisi, Virasoro, ‘87, Georges, Kotliar, Krauth, Rozenberg, ‘96)

1OP Publishing Journal of Physics A: Mathematical and Theoretical

J. Phys. A: Math. Theor. 51 (2018) 085002 (36pp) https://doi.org/10.1088/1751-8121/aaa68d

Out-of-equilibrium dynamical mean-field
equations for the perceptron model

Elisabeth Agoritsas!®, Giulio Biroli!-2, Pierfrancesco Urbani?
and Francesco Zamponi!

We generalized to the persistent stochastic GD and the planted model:

; : DMFT . :
Markovian dynamics of a Non-Markovian dynamics

strongly coupled system of 7| of one degree of freedom

p — oo degrees of freedom | with memory




DYNAMICAL MEAN-FIELD THEORY

Mignaco, Urbani, Krzakala, LZ, NeurIPS’20, 2006.06098

Effective scalar stochastic process

eff. regularisation stochastic noise memory Gauss noise

dt' Mi(t, t)h(t") + x(P)

hg ~ A (0,1)
h(t) = h(t) + hym(t)

Q(F) = — EXOR(E) — O3 (D) h) + J

0

Gausslan effective noise:

(x(0) =0, (O () =2T6( —t) + M2, 1)



http://leshouches2020.krzakala.org/

MEMORY KERNELS AND OTHER VARIABLES

om(t) = — v()m(t) — u(r) m(0) = m,

M1, 1) = %@(r)s(r')alv(%(r); h)dv(R(t'); o))

Mp(t, 1) (S(l‘)aﬂ(il(f); hy))

~ b2 5P(t)

P=0

Su(t) = %<s<t>a%v<l’%<r>; 1) u(r) = %<s<r>hoalv<h'<t>; hy))

i) - %(s(t)iz(t)alv(iz(t); Y 0 i




Persistent-SGD better than GD or SGD

Mignacco, Urbani, LZ; MLST’21, 2103.04902.
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From Mignaco, Urbani, LZ, 2103.04902; DMFT from E. Troiani master thesis.
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https://arxiv.org/abs/2103.04902

P-SDG WITH RANDOM START

Mignacco, Urbani, LZ; MLST’21, 2103.04902.
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PERFORMANCE OF SGD IN PHASE RETRIEVAL

Mignacco, Urbani, L.Z; MLST’21, 2103.04902.

p-SGD needs fewer samples to learn phase retrieval

Chen, Chi, Fan, Ma’19
Cai, Huang, Li, Wang’21

~7 ( poly(log d)

.

GD numerics




SUMMARY

Phase-retrieval (high-d, real-valued teacher-student setting, Gaussian
input data, Gaussian teacher weights) is a neat model to study learning
with neural networks.

e Sample complexity of gradient-based algorithms can be improved
with over-parametrization or with p-SGD.

e Solvable case of feature learning in high-d over-parametrized setting.

o Persistent gradient descent - a variant of SGD with a non-trivial flow
limit, analysable by DMFT, performing better than SGD (without
hidden units).




OPEN QUESTIONS [>3

o
14,
’

| Lt
e, o

N/

G.UESTIONg
Sample complexity of GD and how does it depend on the loss,
initialisation, learning rate?

Architectures for which GD/SGD needs smaller sample complexity
than e = 27

Sample complexity of GD with number of hidden units 1<m<d?
Sample complexity of SGD for over-parametrized networks m>1?

etc.




