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Generalization of the following geometrical structures for
Gaussian measures in R”

@ Riemannian distances

@ Divergences

@ Optimal transport distances

@ Connections and unifying formulations

to infinite-dimensional Gaussian measures and Gaussian processes
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Motivations for studying geometrical structures of

Gaussian measures and SPD matrices

@ Central role in statistics, probability, machine learning
@ Numerous practical applications

Brain imaging (Arsigny et al 2005, Dryden et al 2009, Qiu et al
2015, Zhou et al 2016, Ning 2018)

Computer vision: object detection (Tuzel et al 2008, Tosato et al
2013), image retrieval (Cherian et al 2013), visual recognition
(Jayasumana et al 2015), person re-identification (Devyatkov et al
2018, Matsukawa 2019)

Radar signal processing: Barbaresco (2013), Formont et al 2013,
Braca et al 2018, Aubry et al 2018

Brain Computer Interfaces (BCI) Li et al 2011, Barachant et al
2013, Uehara et al 2015, Congedo et al 2017, Rodrigues et al
2018, Yair et al 2019

Many more applications and references...

H.Q. Minh (RIKEN-AIP) Riemannian distances & Gaussian processes

3/78



Fisher-Rao metric - Affine-invariant Riemannian metric

Sym™*(n) = set of n x n SPD matrices
@ Multivariate zero-mean Gaussian densities on R” <= Sym™*(n)

Y P 1 (1 e
S_{P(X'H)_\/(27r)”det(2(0))e p( 5X Y(0) x>,9€@}

n(n+1)

0= {9:[9‘,...,ek],k: :Z(G)ESym++(n)}

@ Fisher information matrix

dln P(x;0) dln P(x;0)
g 00 o0/

g9i(0) = P(x; 6)dx

@ This defines a Riemannian metric on S, so-called Fisher-Rao
metric, or Fisher information metric
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Fisher-Rao metric - Affine-invariant Riemannian metric

@ Fisher-Rao metric: central element in Information Geometry
(Amari 1985, Amari & Nagaoka 2000, Amari 2016)

@ Explicit expression for Fisher-Rao metricon S

o= e (§) ()

@ Corresponds to the affine-invariant Riemannian metric on
Sym™*(n)

<A, B>Z _ %<Z_1/2AZ_1/2, 2—1/282—1/2>F

= %tr(ZqAZ*1 B), A,Be Sym(n),x € Sym**(n)
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Geometry of SPD Matrices - Riemannian manifold

viewpoint

@ Affine-invariant Riemannian metric (e.g. Pennec et al 2006, Bhatia
2007)

@ Unique geodesic joining A, B € Sym™ " (n)

’YAB(t) _ A1/2(A—1/ZBA—1/2)1‘A1/2
v48(0) = A, va8(1) = B

@ Riemannian (geodesic) distance
duie(A, B) = || log(A™2BA™"/?)||F

@ Rich mathematical structures

@ Corresponds to the Fisher-Rao distance between zero-mean
Gaussian measures on R”
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Geometry of SPD Matrices - Riemannian manifold

viewpoint

Log-Euclidean metric (Arsigny et al 2007)
@ Unique geodesic joining A, B € Sym™ " (n)

V48(t) = exp[(1 — t) log(A) + tlog(B)], 7(0) = A,~(1) =B
@ Riemannian (geodesic) distance
dlogE(A7 B) = H |Og(A) - |Og(B)HF

@ Faster to compute than affine-invariant distance
@ Lead to positive definite kernels, e.g. Gaussian kernel

K(A, B) = exp(—|| log(A) — log(B)|?/o?)
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Infinite-dimensional generalization of Riemannian

distances

@ Substantially different from the finite-dimensional formulation
@ Problems: for A an SPD matrix

A = Udiag(\q,..., An)UT,
log(A) = Udiag(log A1, ..., log A\p)UT

If Ais a strictly positive Hilbert-Schmidt operator
@ Eigenvalues \y — 0as k — oo

Q /\lk — oo and log(\x) — —o0

© A~ 'is unbounded

© log(A) is unbounded
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Infinite-dimensional generalization of Sym™*(n)

@ Generalizing the Log-Euclidean distance
Ohogi(A, B) = || log(A) — log(B)|[r, A, B € Sym™"(n)

to the setting where A, B are self-adjoint, positive Hilbert-Schmidt
operators on a separable Hilbert space H

@ Two issues to consider

@ Generalization of the principal matrix log function
@ Generalization of the Frobenius inner product and norm (the
Hilbert-Schmidt norm is not sufficient)
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Infinite-dimensional generalization of Sym™*(n)

First problem: unboundedness of log(A) since limg_,,, Ay =0
log(A) = Z log(Ak)(ugk @ Uk), lim log(Ag) = —o0
P k—o00

Note: u, ® uy is the generalization of the product uiu/ in R”
Resolution: Regularization with v € R,~v > 0

log(A+~I) = Z log( Ak + v) (U @ ug),
k=1

lim log(Ax + ) = log(7)
k—oo

so log(A + ~I) is bounded
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Infinite-dimensional generalization of Sym™*(n)

Consider the generalization

|[log(A) — log(B)||r — || log(A + 1) — log(B + v1)||us

Second problem: The identity operator / is not Hilbert-Schmidt:

Mlns = tr(/) = oo

For v # 1

[I1og(A +~D)llfs = Z[log Ak + )P = o0
k=1

ForA=B=0,v#v

d(yl,vl) = [[log(~/v)|[as = [log(v/v)| [Hllns = oo
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Infinite-dimensional generalization of Sym™*(n)

@ Second problem: The identity / is not Hilbert-Schmidt

@ Resolution: Extended Hilbert-Schmidt norm (Larotonda,
Differential Geometry and Its Applications, 2007)

1A +1[Fs, = l|Allfs + 2
@ Extended Hilbert-Schmidt inner product
<A + ’7/, B+ VI>HSX = <A, B>HS + v

i.e. the scalar operators ~/ are orthogonal to the Hilbert-Schmidt
operators

2 2 2
A+ ~1s, = IlAllfs +7°  [[/lnsx = 1
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Geometry of positive definite Hilbert-Schmidt

operators

@ Larotonda (Differential Geometry and Its Applications 2007):
generalization of the manifold Sym™*(n) of SPD matrices to the
infinite-dimensional Hilbert manifold

Y(H)={A++v/>0:A"=A Ac HS(H),y € R}
@ Hilbert-Schmidt operators on the Hilbert space H
HS(H) = {A: [|Alffs < oo}

o Aself-adjoint [|A|[2g = Y poq A2
@ Generalization of the affine-invariant Riemannian metric
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Affine-invariant Riemannian metric -

Infinite-dimensional generalization

@ Larotonda (Differential Geometry and Its Applications 2007)
@ Tangent space Tp(X(H)) = HSx(H) NSym(H) VP e X(H)
@ Riemannian metric: For P € ¥(H)

(A+~D),(B+v)p
= (PV2(A4+~AN)PV2 P=12(B 4 vl)P~1/2) s,

@ Riemannian (geodesic) distance

daiHS[(A + 7’)) (B + VI)]
= [[log[(B +v1) " 2(A+41)(B + v1) "]y

@ Related work: Lawson and Lim (PNAS, 2013), Palfia (Advances in
Math., 2016): means of positive operators
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Log-Hilbert-Schmidt distance

Generalizing Log-Euclidean distance di,.e(A, B) = || log(A) — log(B)|
@ Log-Hilbert-Schmidt distance (H.Q.Minh et al 2014)

oghis[(A + 1), (B + vI)] = [[ log(A + 1) — log(B + v1)||sy

@ Log-Hilbert-Schmidt inner product

((A+A1), (B+v)ogns = (log(A+ 1), log(B + v1))msy

@ All quantities are guaranteed to be finite
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Computation of distances and divergences - RKHS

methodology

@ Distances/divergences between RKHS covariance operators

© Distances/divergences between Gaussian processes and
covariance operators of stochastic processes in general

© Both involve RKHS methodology
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Reproducing kernel Hilbert space (RKHS) setting

@ K = positive definite kernels on X x X
@ Hy = corresponding RKHS (reproducing kernel Hilbert space)

@ Positive definite kernel K on X x X induces canonical feature
map ¢ : X — Hy, Kx : X = R, K(t) = K(x, 1)

®(x) = Ky € Hk, Hg = feature space

<¢(X)v¢(y)>7-tk = (Kx, Ky>7-t;< =K(x,y)

@ Assume p = Borel probability distribution on X', with
/ | P(x HHde / K(x,x)dp(x) < oo
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RKHS mean vector and covariance operator

@ X = [xq,...,Xmn| = data matrix randomly sampled from X
according to p, with m observations

@ Informally, ® gives an infinite feature matrix in the feature space
Hy, of size dim(Hk) x m

O(X) = [®(x1),...,P(Xm)]

@ Formally, ®(X) : R™ — H is the bounded linear operator

m
O(X)w =D wid(x;), weR"
i=1
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RKHS mean vector and covariance operator

@ Theoretical RKHS mean

o = / S(x)dp(x) € H
X
@ Empirical RKHS mean

1 ¢ 1
Ho(X) = E Z(D(X,') = E¢(X)1m € Hk
i=1

o Linear kernel K(x,y) = (x,y) on R uyx = 157 x;
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RKHS mean vector and covariance operator

@ Theoretical covariance operator Co : Hx — Hg
Co = [ 90 ®(x)dp(x) ~ o = po
X

@ Empirical covariance operator Co(x) : Hx — Hk

m

'
Coxy) = — D (X)) @ O(X;) — pox) @ LX)
i=1

1 *
= —O(X)Jn®(X)
Jm = Im — L1m1] = centering matrix
e Linear kernel K(x, y) = (x,y) on R?: Cx = LXJ,XT (sample

covariance matrix)
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Log-Hilbert-Schmidt distance between RKHS

covariance operators

The distance
dlogHS [( Cd)(X) + 7’7‘[;{)7 (CdD(Y) + V/HK)]
1 1
has a closed form in terms of m x m Gram matrices

KIX] = &(X)"o(X), (K[X])j = K(xi, X),
K[Y] = o(Y)"®(Y), (KY])j = K(¥i. ),
KIX, Y] = o(X)"o(Y), (K[X, Y])j = K(x;, ;)
KIY, X] = o(Y)"o(X), (KTY, x]); = K(¥i, X))
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Example: Log-Hilbert-Schmidt distance between
RKHS covariance operators

Theorem (H.Q.M. et al - NIPS 2014)

Assume that dim(Hx) = co. Lety > 0, v > 0. The Log-Hilbert-Schmidt
distance between (Cox) + vhi) and (Coyy + vhy) is

deens[(Cox) + 7huc): (Coqvy + v, )] = tflog(In, + Za)l? + tellog(In, + Ta)I?
—2Cpp + (logy — log v)?

1 1

V—meK[X]Jm = Upx U], ﬁJmK[Y]J,,, = UgXgU},
i 1

A*B = WmeK[X, Y]Jnm,

Cag = 1], log(In, + Za)X ' (UFA*BUg o Uy A*BUg) % 5" log(In, + Z5) 1,
H.Q. Minh (RIKEN-AIP)

Riemannian distances & Gaussian processes 22/78




Log-Hilbert-Schmidt distance between RKHS

covariance operators

Two-layer kernel machine for image classification
Distances are expressed in terms of kernel Gram matrices

Images Kernel Covariance LogHS  Distance Matrix ~ Kernel sVm
K operator Kz Classification

Material

Fish e&

aaaaaaa

! H.Q.M., San Biagio, Murino. Log-Hilbert-Schmidt metric between positive definite operators on Hilbert spaces, NIPS 2014

2H.Q.M., San Biagio, Bazzani, Murino. Approximate Log-Hilbert-Schmidt distances between covariance operators for image
classification, CVPR 2016
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@ Riemannian distances
@ Divergences

o Finite-dimensional setting
o Infinite-dimensional generalizations

@ Optimal transport distances
@ Distances/divergences between Gaussian processes
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Log-Determinant divergences - finite-dimensional

setting

Convex cone viewpoint of Sym™*(n)
@ Alpha Log-Determinant divergences (Chebbi and Moakher, 2012)

4 det(152A + 152B)

log — , —1<a<1
277 det(A) 2" det(B) 5

dl%gdet(Av B) =

1—«

@ Limiting cases
Gogae(A B) = lim diyge(A,B) = te(B~A— 1) ~ log det(B~" A)
d—1

logdet

(A.B)= lim diu(A B) = u(A"'B~ 1)~ logdet(A™'B)

@ Correspond to Rényi and Kullback-Leibler (KL) divergences
between zero-mean Gaussian measures on R”
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Infinite-dimensional generalizations

@ Trace class operators Tr(H) = {A: ||Al|x = tr|A| < oo}
o Aself-adjoint, compact, ||A|[x = Y521 [Mkl, tr(A) = Y524 Ak
@ Covariance operators are trace class operators

@ For a strictly positive compact operator A on a Hilbert space #,
with eigenvalues {\x}7° ,

log det(A) = trlog(A) = Z log(Ax) = —o0
k=1

@ Need to define properly consider the set of operators A and
extend the functions tr and det
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Infinite-Dimensional Log-Determinant Divergences

(H.Q.M. Linear Algebra and App. 2017)
@ trx: extended trace class operators and extended trace

trx(A+ 1) =tr(A) +~ tr(]) = 0

@ det: Fredholm determinant
det(A+/ H + k) = exp|trlog(A + /)]
k=1

@ dety: extended Fredholm determinant

detx(A+ vI) = ydet[(A/v) + [] = exp|trx log(A + /)]
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Infinite-Dimensional Log-Determinant Divergences

Alpha Log-Determinant divergences (H.Q.M., Linear Algebra and
App., 2017)

Aoedet (A + 1), (B + )] (simplified version), —1 < a < 1

_ 4 detx (152(A+7)) + F2(B+11))
1-a? detx (A + /)2 detx (B + 1) |

@ A+~Il>0,B+~/>0:A, B =trace class operators
@ detx: extended Fredholm determinant
@ Closed form formulas in RKHS setting

@ Related work in RKHS setting: Zhou & Chellapa (PAMI 2006),
Harandi et al (CVPR 2014) (valid in finite-dimension)
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Infinite-Dimensional Log-Determinant Divergences

H.Q.Minh (2020). Regularized divergences between covariance
operators and Gaussian measures on Hilbert spaces, Journal of
Theoretical Probability

Alpha Log-Determinant divergences <= Rény divergences
a =1 <= Kullback-Leibler (KL) divergence

@ On RY, two Gaussian densities g, 11 are always equivalent,
1o ~ pq (have the same support)

@ Feldman-Hajek Theorem: on #, dim(#) = oo, two Gaussian
measures L, 111 are either equivalent or mutually singular,
o L pq (have disjoint support)

po Ly = KL(po|p1) = o0
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Infinite-Dimensional Log-Determinant Divergences

Theorem (H.Q.M. 2020)

Consider two equivalent Gaussian measures N'(m, C), N'(m, Cy) on a
Hilbert space H. Let S be a self-adjoint Hilbert-Schmidt operator on H

such that C = C}/*(1 — S)C4/?, then

1im Aegael(C + 1), (Co + D] = 2D, (N (m, C)|IN'(m, Co))
= —logdety(/ — S)

det, = Hilbert-Carleman determinant

dety (I + A) = det[(/ + A) exp(~A)], A € HS(H)
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Infinite-Dimensional Log-Determinant Divergences

H.Q.Minh. Alpha-Beta Log-Determinant divergences between positive
definite Hilbert-Schmidt operators (Geometric Science of Information
2017, Information Geometry 2019, Positivity 2020)

@ General formulation encompassing

o Alpha Log-Determinant divergences
o Affine-invariant Riemannian distance

@ Employs extended Hilbert-Carleman determinant

@ These divergences all induce the Affine-invariant Riemannian
metric

@ Closed form formulas in RKHS setting
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@ Riemannian distances

@ Divergences

@ Optimal transport distances and related geometrical structures
]

Entropic regularization of optimal transport

@ Finite-dimensional Gaussian setting
@ Infinite-dimensional Gaussian setting

Distances/divergences between Gaussian processes

H.Q. Minh (RIKEN-AIP) Riemannian distances & Gaussian processes 32/78



Optimal Transport distances between probability

measures

@ (X, d) = complete separable metric space (e.g. X =R")

@ c: X x X — R>( = lower semi-continuous cost function (e.g.
c(x,y) = [lx — y|[? for X =R")

@ P(X) = set of all probability measures on X.

@ The optimal transport (OT) problem between two probability
measures vy, v1 € P(X) is (Villani 2009, 2016)

OT(vg,v1) = min  E,[c]=  min /X><X c(x,y)dv(x,y)

~v€EJoint(vg,v1) ~y€EJoint(vg,v1)

@ Joint(vp, 1) is the set of joint probabilities with marginals vy and v
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Optimal transport distances

@ Pp(X) = set of all probability measures . on X of finite moment of
order p, 1 < p < oo, i.e.

/ dP(xg, x)du(x) < oo for some (any) xg € X.
X

@ p-Wasserstein distance W, between vy and v

TI=

Wp(vo,v1) = OTge(r0, v1)P.

@ This distance defines a metric on Pp(X)

@ Takes into account the geometry of the underlying space X (via
the distance d)
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Gaussian setting - Bures-Wasserstein distance

@ For two multivariate Gaussian distributions p; = N (m;, C;),
i = 0,1, on R", with the square cost function

W2(jio, 1) = min / 1x — y|Pdy(x.y)
R RN

y€Joint(fig,41)

@ Wh(po, 111) admits the following closed form (Dowson & Landau
1982, Olkin & Pukelsheim 1982, Givens & Shortt 1984)

1/2
WE (0, 1) = lmo — mi |2 + tr(Co) + tr(C1) — 2ur (€} /2CoC1 /%) .
@ Bures-Wasserstein distance between SPD matrices: my = my,

1/2
024/(Co., C1) = tr(Co) + tr(Cy) — 2tr (c}/"‘coc}/z) .
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Wasserstein Riemannian geometry of SPD matrices

@ Riemannian metric: For each P € Sym™ " (n) and each pair
Y,Z € Tp(Sym™*(n)) = Sym(n) (Takatsu 2011)

(Y, Z)p =tu[Lp(Y)PLp(Z)]
where Lp(Y) = X € Sym(n) is the unique solution of
Lyapunov equation XP+ PX =Y

@ Riemannian distance (Bures-Wasserstein distance) is the length
of the geodesic

v(t) = (1 —t)2A+ B+ t(1—t)[(AB)'/2 + (BA)'/?]
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Infinite-dimensional Wasserstein distance

@ [2-Wasserstein distance between two Gaussian measures
pi = N(m;, C;), i = 0,1, on an infinite-dimensional Hilbert space
H (Gelbrich 1990)

W2 (1o, 1) = ||mo — my |2 +te[Co + Cy — 2(CY/2CCY/%)1/2)1/2

@ Same expression as in the finite-dimensional case

@ Some recent work on Gaussian processes: Mallasto and Feragen
(NIPS2017), Masarotto, Panaretos and Zemel (Sankhya 2019)

@ Bures-Wasserstein distance between two covariance operators
dew(A, B) = (t[A + B — 2(A'/2BA/2)1/2))1/2

@ Valid for singular covariance operators
@ Not Fréchet differentiable
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Entropic regularization of optimal transport

@ Exact optimal transport distances generally computationally
demanding

@ Exact Wasserstein distance W, can have bad sample complexity
(worst case exponentially O(n—'/9) in R (Dudley 1969,
Weed,Bach 2019)

@ Entropic regularization (Cuturi 2013)

OTS(u,v) = _min  {E,[c] + eKL(3]|u ® 1)}
~y€Joint(p,v)

@ KL(v||p) = Kullback-Leibler divergence between v and

@ Equivalent to the classical Schrédinger Bridge Problem
(Schrédinger 1931)

@ Optimization problem can be solved efficiently using Sinkhorn
algorithm
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Entropic regularization of optimal transport

@ Biased: OTg,(u, 1) # 0 (neither a distance nor divergence)
@ Sinkhorn divergence (Genevay et al 2018, Feydy et al 2019)

1
S;)(,U,, V) = OTZ’P(:u'v V) - E(OTEIP(Ma :u) + OTE}D(Va V))

@ Much research interest recently,e.g. Sommerfeld 2017, Ripani
2017, Mena, Niles-Weed (2019), Gerolin et al 2019

@ Some recent applications: learning generative models (Genevay
et al 2018), Sinkhorn autoencoders (Patrini et al 2019), density
functional theory in chemistry (Gerolin et al 2019)
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Entropic regularization - Gaussian setting

For uj = N(m;, C;), i = 0,1, on R",

OTqe (o, ) = min  {By|1x = yI[2 + eKL(1] 1o @ 1) }
y€EJoint(po,p1)

@ Janati, Muzellec, Peyré, and M. Cuturi (2020), Mallasto, Gerolin,
Minh (2020), del Barrio, Loubes (2020)

@ Mutual information KL(v||po ® p1) = H(po) + H(p1) — H()
@ H(X) = — [pnlog[fx(X)]fx(x)dx is the differential entropy

@ Maximum Entropy property of Gaussian densities: if X has mean
zero and covariance matrix C, then

H(X) < % log[(2me)" det(C)], with equality if and only if X ~ A/(0, C).
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Entropic regularization - Gaussian setting

For uj = N(m;, C;),i=0,1,0on R",

(+) OTqe(po, ju) = min {EwHX — YII? + eKL(Y|[1o @ m)}

@ Maximum entropy of Gaussian densities: KL(7||u0 ® 1) is
minimum if and only if v is a joint Gaussian density of 1o and 4

@ A minimizer v of (x) must be a joint Gaussian density

_ mg o Co C B ) ' .
e N (<m1> 7r>’ M= <CT C~|>, C = cross-covariance matrix

KL(7||1o ® p11) = 3 log (%)
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Entropic regularization - Gaussian setting

For Wi = /\/'(m,-, C,'), i= 0,1, both OT;Z(;L(J, M1) and SE(,U(),,LM) admit

1

1 1\2
closed form formulas. Let Nj =/ + <I+ 1—20,? C,-Cf) ,1,j=0,1, then

OT (o, 114) = [[Mo — my|% + Tr(Co) + Tr(C1)
- % [Tr(Ngq) — log det (Ng4) + nlog2 — 2n],
€ € € € €
S5 (o, p11) = [[mo — my||5 + 2 <Tr( 0o — 2Ng1 + Niy)
det?(Ns,)
| o1 .
+log (det(N&Qdet(Nﬂ)))

The unique minimizer ~ (optimal transport plan) is a joint Gaussian
measure of pp and 4.
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From finite to infinite-dimensional setting - entropic

regularization

@ The entropy H(X) = 1 log[(2re)? det(C)] does not generalize to
infinite dimension (det(C) = [[:21 Ak, limg_00 Ak = 0)

@ For two Gaussian measures N (m;, C;), i = 0,1 and their joint
Gaussian measure ~,

— Mg o CO C B ) ]
T N (<m1> ’ r) = <C* C1> , C = cross-covariance operator

@ The right hand side of the following expression is not well-defined

KL(7||po ® p1) = % log (det(Cd(chj;;(Q))

@ However, the mutual information KL(v||zo ® p1) is well-defined
(can be infinite)
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Theorem (Minimum Mutual Information of Joint Gaussian
Measures)

Let H1,Ho be two separable Hilbert spaces. Let

pux = N(myx, Cx) € Gauss(H1), py = N(my, Cy) € Gauss(Haz),
ker(Cx) = ker(Cy) = {0}. Let~ € Joint(ix, p1y), 70 € Gauss(px, py), 7o
is equivalent to ux ® uy. Assume that~ and -~y have the same
covariance operator I and x ® py has covariance operatorI'y. Then

1 *
KL(llpx @ pry) > KL(v0llx ® pry) = =5 log det(/ — V*V).

Equality happens if and only if v = ~o. Here V is the unique bounded
linear operator satisfying V € HS(H2, H+), || V|| < 1, such that

2T VY 2
Fr=r, (V* I)I'O
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Entropic regularization - Gaussian measures on

Hilbert space

FOI’,u,' :/\/'(m,-, C,-),i:0,1,on H,

(+5) OTie (o, 1) = min  {E,|Ix = y|[2 + eKL(vlluo © pur) |
y€Joint(pio,11)

@ A minimizer v must satisfy v € Gauss(po, t1),7 ~ Lo & L1
@ Direct solution: problem (xx) is equivalent to
OT¢ (1o, 1) = ||mo — % + w(Co) + tr(Cy)

_ ot (VC!?C/?) + Slogdet(l — V*V
VeHS(T{?,)ﬁVHd{ (Ve G )+2 og det( )}

@ Infinite-dimensional optimization problem but can be solved for V
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Entropic regularization - Gaussian measures on

Hilbert space

Solution via Schrédinger system

(+5) OTqa(uo ) = min  {B,llx = yI[2 + eKL(3]luo  pur) |
y€Joint(po,11)

@ Since v € Gauss(uo, (1), ~ po ® 1, we solve for the
Radon-Nikodym density

d")/ € €
m(x,y) = a“(X)B(y)k(x.y)

for k(x, y) = exp(~ X%
@ «f, 3¢ obtained via solving the Schrodinger system

a“ (X, [ W)k (X, y)] = 1,
BWE [ (x)k(x, y)] = 1.
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Entropic regularization - Gaussian measures on
Hilbert space

Theorem (Sinkhorn divergence between Gaussian measures
on Hilbert space)

Let ug = N(my, Co) and pq = N(my, Cy). For each fixed e > 0,

€ € € € &
S5 (1o, 111) = |lmo — my||? + Ztr [Mgo — 2Mgy + Mi4]

det (1 + 3Ms;)°
+ — log 7 3
4 det (/+ §M50> det (I+ §M151)

1/2
Here Mj; = —1 + (I + 16—20,1 /2 G C,.1 / 2) is a trace class operator, det
is the infinite-dimensional Fredholm determinant,
lim S5(po, 1) = WE(po, 1), lim S5(po, 1) = ||mo — mq|[?
e—0 €—00

1 H.Q.M. Entropic regularization of Wasserstein distance between infinite-dimensional Gaussian measures and Gaussian
processes, Journal of Theoretical Probability, 2022

H.Q. Minh (RIKEN-AIP) Riemannian distances & Gaussian processes 47/78



RKHS Gaussian measures

@ p1, po = Borel probability measures on X — Gaussian measures
Nt piy Co ), i = 1,2 on RKHS Hy

@ Sinkhorn divergence S5[N (1o p, > Co.py ), N (110,05 Co,py)] 18
well-defined with closed form formula

@ X=(x)y,Y = ()L = independently sampled from (X, p1),
(Xa 02)
@ Empirical Sinkhorn divergence

S5 N (o x): Cox))s N (Hoy)s Covy)]

has closed form formula in terms of Gram matrices
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Kernel Gaussian-Sinkhorn divergence as a
semi-metric between Borel probability measures

LetK : X x X — R be a characteristic kernel. Then, for0 < ¢ < oo,
SE[N(/“D,M ) C¢7P1 )’N(:u@pza C‘D,pz)] = SE[N(,LL‘D,PN C@Pz)aN(Hd’,Pw C¢7p1 )]v

S5V (10,15 Co,p1 )s N (10,055 Co,,)] = 0,
SE[N(M¢,P1 ; Co,p, )aN(M¢,p2’ C‘D,Pz)] =0<+= p1 = p2 Vp1,p2 € P(X).

Examples of characteristic kernels (p — 10, is injective (Fukumizu et
al NIPS2007)): Gaussian kernel K(x,y) = exp(—”’(%”z), o #0,
X = RY; Laplacian kernel K(x, y) = exp(—a||x — y||),a > 0,X =RY
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For p1 = N(pex): Cox))» P2 = N(1o(yy; Cory))

1 1 2
S5(p1.p2) = ALK+ —ATKIY]1 — AT KX, YT,

e | 16 1/2
+Ztr —/+(/+ 5 2(JmK[X]Jm)>

€ 16 1/2
+Ztr -+ (/+ 5 2(JnK[Y]Jn) )

16

1/2
S (/+ - JnKIX, YIUKIY. X]Jm> ]

1/2
+ %Iogdet <;/+ ; </+ - ImK X YIUK(Y, X]Jm) )

¢ 16 /2
— Zlogdet 2/+ 5 <I+ 5 (ImK[X]Im) )

¢ 16 '/
- Zlogdet 2/+ 5 (/+ — 5 (nK[Y]dn) ) .
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Limiting behavior

Ase —sococande — 0

Jim S5(k0; 1) = llpo(x) — Ho) |17,

1 1 2
= 1K XITm + S1TKIY[1n — — A7KIX, Y15,

Empirical squared Kernel MMD distance (Gretton et al 2006)

. . 1 1 2

lim 8510, 1) = —1RK X1 + 17 K[V[1n — —ALK[X. V)1,
1 1

+ Etr(K[X]Jm) + Btr(K[Y]J,,)

KX, Y]JnKY, X]Jm] /2.

2
vmn
Kernel Wasserstein Distance (Zhang et al PAMI 2020, H.Q.M GSI
2019, Linear Algebra and lts Applications 2022)
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@ Riemannian distances

@ Divergences

@ Optimal transport distances and related geometrical structures
]

Entropic regularization of optimal transport

@ Finite-dimensional Gaussian setting
@ Infinite-dimensional Gaussian setting

Distances/divergences between Gaussian processes
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Distances/divergences between Gaussian processes

@ T = compact metric space (in general o-compact metric space)
@ v = nondegenerate Borel probability measure on T

@ Gaussian process & = (&t)ter = (£(w, t))teT ON a probability space
(Q, F, P) with mean function p(t) and covariance function K(s, t)

p(t) = BE(t), K(s ) = E[(E(s) — u(8))(E(t) — u(D))], s, teT

@ For each finite set X = (x;); in T, (£(., X)) is a random vector
distributed according to the Gaussian measure N (p[X], K[X]) in
R, u[X] = (n(x))1, (KIX])j = K(xi, x)
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Distances/divergences between Gaussian processes

Assume /T (u(1))2d(t) < oo, /T K(t, 1)du(1) < o

@ The sample paths of ¢ are in £2(T,v) almost surely
@ If dim(Hx) = oo, the sample paths are outside 7/, almost surely

@ There is a one-to-one correspondence’between measurable
Gaussian process GP(u, K) <= N (u, Ck) (Gaussian measure)
onH = L3(T,v)

(Ckf)(s /Kst f)du ()

! Rajput and Cambanis. Gaussian Processes and Gaussian Measures, 1972
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Distances/divergences between Gaussian processes

@ Any distance/divergence function D between Gaussian measures
on H = L3(T,v) induces a distance/divergence function Dgp
between Gaussian processes with paths in £2(T,v)

@ Given ¢ = GP(p;, K')
Dop(¢',€%) = D(N (p1, Cr), N (112, Cke))

@ Subsequently, assume 1 = o =0

@ Related work: Panaretos, Kraus, and Maddocks (2010), Horvath
and Kokoszka (2012), Fremdt, Steinebach, Horvath, and
Kokoszka (2013) (Hilbert-Schmidt distance), Pigoli, Aston,
Dryden, and Secchi (2014), Mallasto and Feragen 2017,
Masarotto, Panaretos and Zemel (2019) (Wasserstein distance),
Matthews et al (AISTATS 2016), Sun et al (ICLR 2019) (KL
divergence, functional Bayes NN)

H.Q. Minh (RIKEN-AIP) Riemannian distances & Gaussian processes 55/78



Distances/divergences between Gaussian processes

¢~ GP(0,K"),i=1,2
@ Log-Hilbert-Schmidt distance, v € R,~ > 0 fixed

logHS(g1 62) logHS[N(O CK1) N(O, CKQ)]
= |[log(y/ + C+1) — log(v/ + Cxez)l[nsy

@ Affine-invariant Riemannian distance, v € R, ~ > 0 fixed
D;ysz(§1 ) 52) = DziHS[N(Oa Ck1), N (0, Ck2)]
= || log[(v/ + C1)™"/2(y + Ci2) (4] + Cr) /] lmss

@ Wasserstein distance/Sinkhorn divergence, ¢ > 0 fixed

W2(§1,€2) = W2[N(O7 CK1)7N(0’ CKZ)]a
S5(¢7,6%) = S5IN(0, Ck1), V(0 Cy2)]

H.Q. Minh (RIKEN-AIP) Riemannian distances & Gaussian processes 56/78



Estimation of distances/divergences

o X=(x)M eTm

o (K'XDik = K'(x. xc) = E[§'(w, X))€(w, X)), 1 < jok < m

® (€1, )y ~ N(0, K'[X]) in R™

@ We can estimate the infinite-dimensional formula in £2(T,v)

D[N(0, Cx1),N(0, Cke)]

by the finite-dimensional formula in R

D [N (o, %K1 [X]) N (0, :nKZ[X]ﬂ

where D = H HHSa logHS’ D;HS7SZ7 Wg.
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RKHS covariance and cross-covariance operators

H i = reproducing kernel Hilbert space (RKHS) associated with K’
Rui : L2(T,v) = Hyo, Ryaf(x) = / Ki(x, () du (1),
T
Cki = RiiRyi : L2(T,v) — L3(T,v)

with Ry, : Hyi — £3(T,v) = inclusion operator
@ RKHS cross-covariance operators

R’/ = RK/'FI’;k(j . HKj — HKI,

RU_/(K[@@K{)du(t), R,-/-f_/K,’<f, Ki), du(t), ij=1,2.

Rif(x) = /K, (t)du(t) = /K’ ()du(t), fe H,

@ RKHS covariance operators Ly = Rjj = RxiRy; : Hyi — Hyi
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RKHS covariance and cross-covariance operators

® Lyi = Rjj = RkiRy; : Hki — Hyi have the same nonzero
eigenvalues as Cyi = Ry, Ryi : L2(T,v) — L?(T,v), so have the
same trace, same || ||us

They are the same when restricted to H,i C £3(T,v)

@ Both appear extensively in learning theory with kernel methods,
e.g. Cucker and Smale (2000), Smale and Zhou (2007), Rosasco,
Belkin, and De Vito (2010)

@ Cyi and Ly are generally not interchangeable
@ D[N(0, Cx1),N(0, Cx2)] is well-defined
@ D[N(0, Lk1),N(0, Lg2)] is generally not well-defined
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RKHS covariance and cross-covariance operators

@ Empirical version given X = (x;)Z, € T™

Rij,X : 'HK,' — %Ki,
1 m i ]
R’],X = E I;(ka & ka) . HK/ — HK/‘,

m
Ryxf = Z (F, K, Z Ko [ € Hig

@ Lyix = Riix : Hii — Hgi has the same nonzero eigenvalues as
LKIX] : R™ — R™
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RKHS covariance and cross-covariance operators

Assume sup,7 K'(x, x) < K?
Proposition (Convergence of RKHS empirical covariance and
cross-covariance operators)

Rillns a4,y 14,0) < ity |1RixIlas (g m,g) < sisj 1,/ = 1,2, vK € T™.
LetX = (x;), be independently sampled from (T,v). V0 < § < 1, with
probability at least1 — 0,

Kl

2log 2 2log 2
[|Rjjix — Riflluas(x,  x )</‘5i’€j|: m6+ —
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Convergence in Hilbert-Schmidt norm

Compare with 2-Wasserstein distance (weak convergence)

lim W[N(0,A),N(0,A)] =0<= lim |[|Ap—A|lx =0
n—o0 n—o0

Theorem (Convergence in Sinkhorn divergence)
Let {AN}NeNa Ae Sym+(7-l) N TI‘(H). Then

3
SgelN (0, An), N (0, A)] < —[l|Anllus + [ Allrs][Av — Alls-

In particular, lim ||Ay — Allus =0 = lim S5[N(0,An),N(0,A)] =0
N—oo N—o0

y

Consequence: We can apply laws of large numbers for Hilbert
space-valued random variables to obtain sample complexity
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Estimation of Sinkhorn divergence

G(A) = tr[M(A)] — log det </ + ;M(A)> ,where M(A) = —1 + (I + c?A)'/2

With this definition, with ¢ = 2,

Proposition (RKHS covariance and cross-covariance

operator representation for Sinkhorn divergence)

LetX = (x;)’y € T™. Then
1
SN0, Cir). (0, Cie)] = — | G(L1) + G(L}2) — 2G(RiRio)|

S5 [N <o, %/@ [x]> N <o, ;Kzlxlﬂ
1

= [G(L,z@ x)+ G(Leo ) — 2G(R72,xﬂ1z7x)}
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Estimation of Sinkhorn divergence

' 2
Assume sup,. 7 K'(x, x) < &S

Theorem (Estimation of Sinkhorn divergence between
Gaussian processes from finite covariance matrices -

bounded kernels)

LetX = (x;)[", be independently sampled from (T, v). For any
0 < < 1, with probability at least1 — ¢,

S5 [N <o, %W [X]) N <o, :nKz[X]> — S§[NV(0, Ck1), N (0, CKZ)]] ‘

6 2log 8 2log &
S [2ad 2]
€ m m

The convergence is dimension-independent
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Estimation of Log-Hilbert-Schmidt distance

Theorem (Estimation of Log-Hilbert-Schmidt distance from
finite covariance matrices)

Lety € R,y > 0 be fixed. Let X = (x;)!" , be independently sampled
from (T, u) V0 < § < 1, with probability at least 1 — o,

2

log <7/+ %W [X]> — log <7/+ r1nK2[X]) .

—||log(y! + Ck1) — log(v! + Cre)llas(c2( 1))

6 6
Sz(ﬂ?iﬁg) (2|0g5+ 2Iog5)
~y m V' m
+2/{$n§ 1+/~£$+/@% 2|og%+ 2log 2
2 2y m m ’
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Estimation of affine-invariant Riemannian distance

Theorem (Estimation of affine-invariant Riemannian
distance from finite covariance matrices)

Let~y € R,~v > 0 be fixed. Let X = (x,) ", be independently sampled
from (T,v). Forany 0 < § < 1, with probab///ty at least1 — o,

(’Y/+,1nK1[X])1/2 (,Y,JF;’Kz[X]) ('Yl+r1nK1[X]>1/2] 2

F

log

—||log[(v/ + C1)~"/2(v1 + Cie) (v + Ci1) ™21 sz (7.0

3 2 6 6

1 2 K2 K2 K1k 2log 2 2log &

§2(1+H‘> [(n1+nz)2+‘ 2] <n1+m2+ 12) 85 | €5
¥ y 5 ¥

3
3
[

The convergence is dimension-independent
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Estimation of 2-Wasserstein distance

Theorem (Estimation of 2-Wasserstein distance from finite
covariance matrices)

LetX = (x;)", be independently sampled from (T, v). Assume further
that dim(H 2) < co. VO < ¢ < 1, with probability at least 1 — 4,

’sz [N (o, %w [X]) N <o, :nK2[x1>] — W2Z[N(0, Cx1), N(0, Cke)]

2log® /2 6'
g5 i )
m m
- 2Iog% 2Iog%
+ 2V2k1kp/dim(H c2) — p
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Estimation of distances from finite samples

@ The finite covariance matrix K[X] is generally unknown

@ KI[X] needs to estimated from finite samples

@ ¢ ~ GP(0, K) defined on probability space (22, F, P)

@ Assume W = (w,-)f\;, corresponding to N sample paths
&i(x) = &(wi, x)

@ Onaset X = (x;)!", € T™, this gives the m x N data matrix

f(W1,X1),...,§(wN,X1),
Z= ( ) = [2(w1), ... 2(wn)] € R™N

§(w1,xm), . ,f(wN,Xm)

Here z(w) = (§(w, X)),
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Estimation of distances from finite samples

Given the m x N data matrix

§(w1,X1), C. ,f(wN,X1),
Z= = [2(w1),...2(wy)] € R™N

5(“17Xm)7 cee aé(wNaxm)

Since (K[X])j = E[¢(w, X)&(w, X)),

KIX] = E[z(w)z(w)"] = /Q 2(w)z(w)" dP(w)

The empirical version of K[X], using the random sample W = (w;)¥

N
. 1 1
KX = > 2wz = y227
i=1
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Estimation of Sinkhorn divergence

Theorem (Estimation of Sinkhorn divergence between
Gaussian processes from finite samples - bounded kernels)

Let X = (x;){", be independently sampled from (T,v). Let
W' = (o] )L, W2 = (w?)}, be independently sampled from (Q1, Py)
and (92, P>), respectively. V0 < 6 < 1, with probability at least 1 — 9,

5 [/\/ (o, %k\}w [X]) N (o, %K&V [X])} — S5[N(0, Cx1), N(O, Cx2)]

2log 2 [2log 12
§6(f<a‘$+/f§)2[ %85 4 %
E m m
24/3 8 16
+ 6:5[[(14—6)/4‘11—1-(34—5)/1%/{%4-&4

Here the probability is with respect to the space
(T, )™ x (1, PN x (Q2, P2)V

VN

<
=} = = e
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Numerical experiments

Figure: Samples of the centered Gaussian processes A'(0, K1), A'(0, K?) on
T = [0, 1] and approximations of squared distances between them. Left:
K'(x,y) = exp(—allx — y||), a= 1. Right: K3(x,y) = exp(~||x — y[|?/0?),

o = 0.1. Here the number of sample paths is N = 10, 20, ...,1000, and
v=10""7
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Numerical experiments

s R . R ol PR —
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0 01 02 03 04 0s 08 o7 o8 0o 1

Figure: Samples of the centered Gaussian processes A'(0, K1), A'(0, K?) on
T = [0, 1] and approximations of squared distances between them. Left:
K'(x,y) = exp(—allx — y||), a= 1. Right: K*(x, y) = exp(—al|x — y[]),

a = 1.2. Here the number of sample paths is N = 10,20,...,1000, and
v=10""7
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Numerical experiments

S0 w0 70 w0 0 100 0 00 20 a0 40 s0 w0 70 S0 0 1000 0 100 20 a0 400 500 800 700 800 00 1000

Figure: Approximate divergences/squared distances between the previous
Gaussian processes on T = [0,1]9 ¢ RY. Left: d = 1. Middle: d = 5. Right:
d = 50. The estimation is obtained using N realizations of each process.
Here N = 10,20, ..., 1000.
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@ Generalization of Riemannian distances between Gaussian
measures from R” to the Hilbert space setting

@ Affine-invariant Riemannian and Log-Euclidean distances,
Log-Determinant divergences: regularization is theoretically
necessary

@ Wasserstein distance: entropic regularization leads to favorable
theoretical properties

@ Hilbert-Schmidt convergence leads to dimension-independent
sample complexities

@ Many more theoretical results can be obtained

@ Upcoming: Kullback-Leibler (KL) and Rényi divergences
between Gaussian processes

@ Future work: beyond Gaussian process setting
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Thank you!
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