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Team’s Vision and Social Impact:

 Develop novel algorithms that allow accurate learning from
data with limited information.

 Enable machine learning in applications with imperfect and Semi-supervised
limited data, such as health care and natural disasters. Unsupervised

Supervised

Our target:
Weakly-supervised

Labeling cost

Research Activities: Low  Classification accuracy High
* Develop practical algorithms that have theoretical support.
* Help applied researchers use our algorithms in their problems.

 Real-world data can be highly noisy.

Weakly-Su peI’Vised RObUSt Lea n | ng « We develop robust algorithms that learn accurately
pa . from extremely noisy data.
Classification

* Real-world data often contains only limited
information.
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Co-teaching Masking
B Goal: Robust DNN training with noisy train data. M Goal:
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M Results: From Positive-conf (Pconf) data, ot datasel
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PN classifiers are trainable!
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SU Classification e Being robust to the worst test distribution. ow-ran ipped (+missing
M Our finding: In classification, this merely results in B Method: Minimize square |oss + squared-hinge |oss.
. 2
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e Since the 0-1 loss is different from a surrogate . B B

iteration

10 Iteration H
(a) Column-diagnoal (CIFAR-10) (b) Tri-diagnoal (CIFAR-10) (c) Block-diagnoal (CIFAR-100)

B Goal: Restore a low-rank matrix from clipped values.
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B Problem: Delicate classification (salary, religion...):

e Highly hesitant to directly answer questions.

® Less reluctant to just say “same as him/her”.
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® Recovery is accurate. 10

min sup By [Ag0(2). ) surrogate losses- B Theoretical support: aRars A e BRI it
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Margin

E.g. KL divergence, Chi-square divergence

Hu, Sato & Sugiyama (ICML2018) Teshima, Xu, Sato & Sugiyama (AAAI2019)
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5 D/PD * Real-world interaction data can be expensive.
* We develop algorithms to learn an optimal

Bao, Niu & Sugiyama (ICML2018) decision maker from limited interaction data.

Active Feature Acquisition

B Problem: features are T | pressure 7| | PO BGoal: Estimate the relative impact of treatment. M Goal: DRL for high-dimensional controls.

missing in many real Nos |z | 138 ||| ves ®Example: Medical treatment ®Example: Robotics N
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B Goal: better diagnosis + lower feature acquisition cost = el ) Recovery rate +X% ® Data is expensive to obtain.
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T st MStandard data: treatment t & outcome y. (¢, y) MOur solution: 2"d-order DRL method
: with linear computational complexity.
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Results o B Result: Estimation is still feasible 11 Newton _ SGD
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