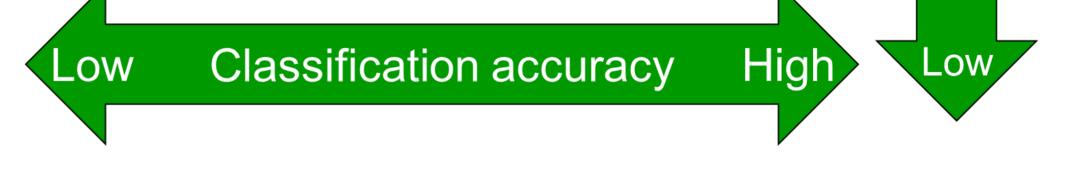
不完全情報学習チーム 杉山将 **Imperfect Information Learning Team** Masashi Sugiyama RIKEN

Team's Vision and Social Impact:

- Develop novel algorithms that allow accurate learning from data with limited information.
- Enable machine learning in applications with imperfect and limited data, such as health care and natural disasters.

Research Activities:

- Develop practical algorithms that have theoretical support.
- Help applied researchers use our algorithms in their problems.



Weakly-Supervised Classification

- Real-world data often contains only limited information.
- We develop algorithms to learn from such data.

Pconf Classification

Problem: Only positive (P) data is available, not negative (N) and unlabeled (U) data: • Data from rival companies cannot be obtained. • Only positive results are reported (publication bias).

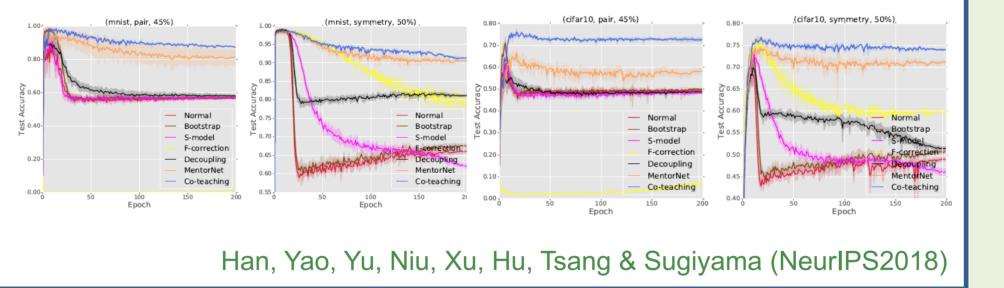
Robust Learning

Real-world data can be highly noisy.

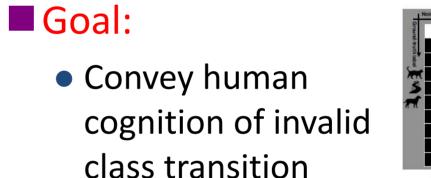
We develop robust algorithms that learn accurately lacksquarefrom extremely noisy data.

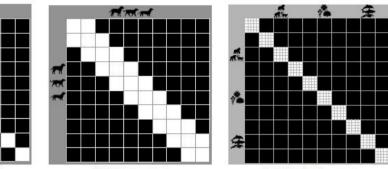
Co-teaching

- **Goal**: Robust DNN training with noisy train data.
- Proposal: Co-teaching with two networks.
 - In each mini-batch data, each network samples its small-loss instances as the useful knowledge, and teaches such useful instances to another network.
- **Effectiveness**: Works well (but no theory)!



Masking

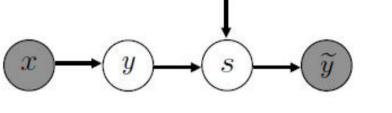


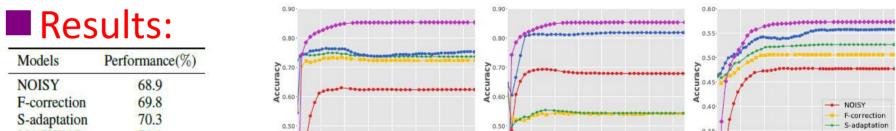


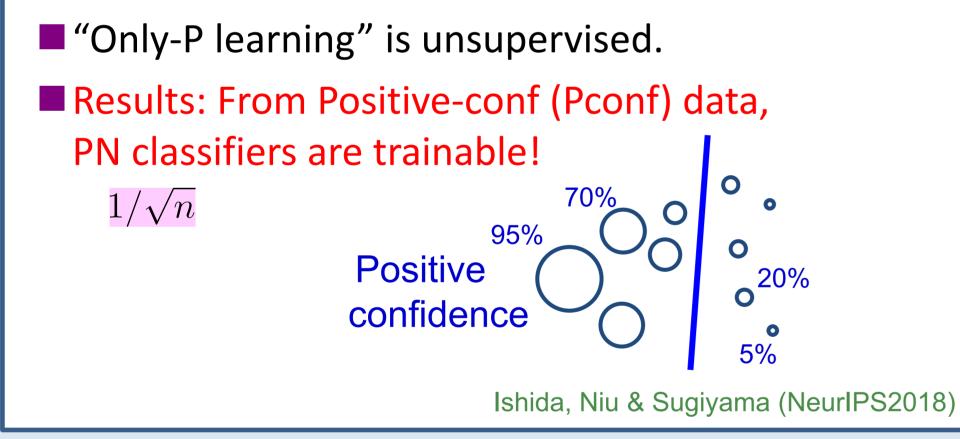
Model:

NOISY

• Structure-aware probabilistic model

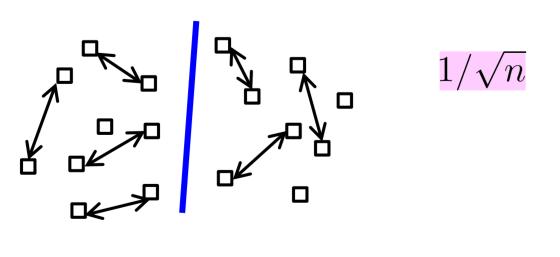






SU Classification

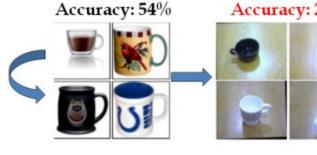
- Problem: Delicate classification (salary, religion...):
 - Highly hesitant to directly answer questions.
 - Less reluctant to just say "same as him/her".
- Results: From similar and unlabeled (SU) data, PN classifiers are trainable!



Bao, Niu & Sugiyama (ICML2018)

Distributionally Robust Learning

Problem: Training and testing data distribution may differ.

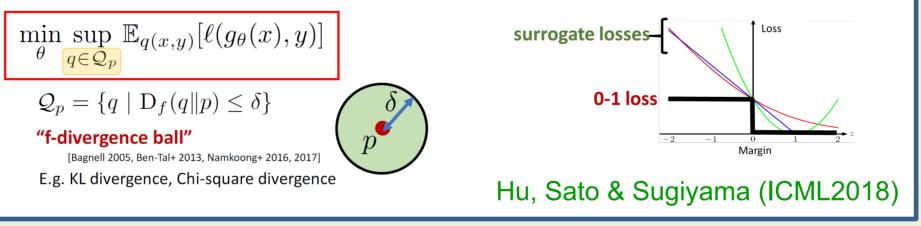


Distributionally robust learning:

• Being robust to the worst test distribution.

Our finding: In classification, this merely results in the same (non-robust) classifier.

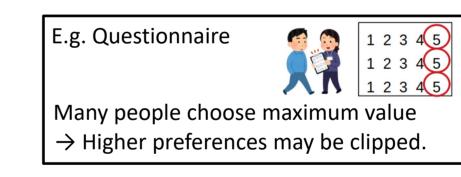
• Since the 0-1 loss is different from a surrogate loss.



MASKING CLEAN 75.2 (b) Tri-diagnoal (CIFAR-10) (a) Column-diagnoal (CIFAR-10) Clothing1M dataset Han, Yao, Niu, Zhou, Tsang, Zhang & Sugiyama (NeurIPS2018)

Clipped Matrix Completion

Goal: Restore a **low-rank matrix** from <u>clipped</u> values.



Ground truth				Observation							
4	7	4	7	4			7	4	7	4	
0	3	6	15	12		0	3	6	10	10	
4	6	2	2	0		4	6	2	2	0	
2	6	7	16	12	+	2	6	7	10	10	
8	13	6	9	4		8	10	6	9	4	
	Lov	v-ra	ank		Cl	Clipped (+missing					

Method: Minimize square loss + squared-hinge loss.

 $\min_{X} \frac{1}{2} \sum_{ij:non-clipped} (obs_{ij} - X_{ij})^2 + \frac{1}{2} \sum_{ij:clipped} \max(0, obs_{ij} - X_{ij})^2 + R(X)$

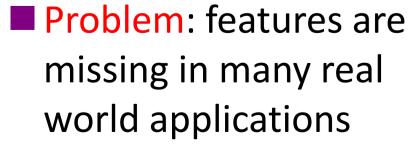
Theoretical support: • The problem is solvable. • Recovery is accurate.

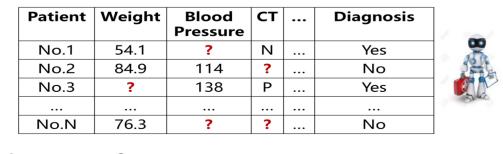
О	bse	rva	tior	۱	Estimated matrix						
	7	4	7	4		4.0	7.0	4.0	7.0	4.0	
	3	6	10	10		-0.0	3.0	6.0	14.9	11.9	
	6	2	2	0	\Rightarrow	4.0	6.0	2.0	2.0	0.0	
	6	7	10	10	0	2.0	6.0	7.0	15.9	11.9	
	10	6	9	4		8.0	13.0	6.0	9.0	4.0	

Teshima, Xu, Sato & Sugiyama (AAAI2019)

- Real-world interaction data can be expensive.
- We develop algorithms to learn an optimal decision maker from limited interaction data.

Active Feature Acquisition





Supervised matrix

Active feature

acquisition

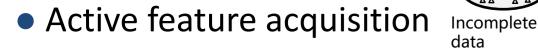
- classifier

completed data

Goal: better diagnosis + lower feature acquisition cost

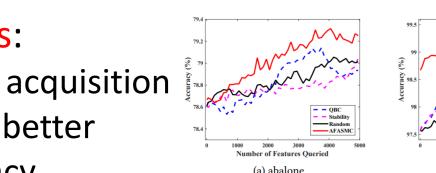
Method:

• Supervised matrix completion

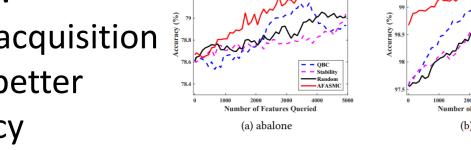


Results:

• Lower acquisition cost + better



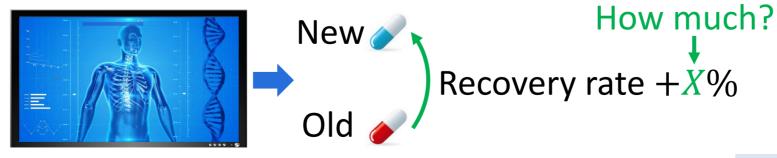
accuracy



Uplift Modeling

Goal: Estimate the relative impact of treatment.

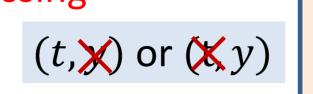
• Example: Medical treatment



Standard data: treatment *t* & outcome *y*. (t, y)

Our setup: one of them is always missing

No complete data available.



Result: Estimation is still feasible under reasonable assumptions.

Proposed method is fast & accurate.

Yamane, Yger, Atif & Sugiyama (NeurIPS2018)

Deep Reinforcement Learning (DRL)

Goal: DRL for high-dimensional controls.

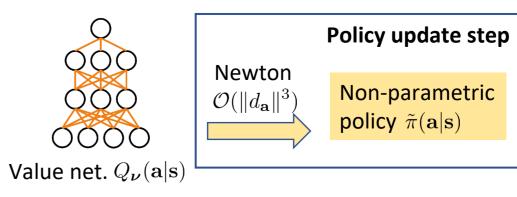
• Example: Robotics

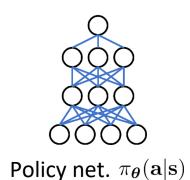
Issues:

Data is expensive to obtain.

Efficiency methods does not scale well.

Our solution: 2nd-order DRL method with linear computational complexity.





Tangkaratt, Abdolmaleki & Sugiyama (ICLR2018)

SGD