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[11], [12], [13]. DMD basically computes the eigende-
composition of Y X†, where the columns of X comprise
x1, . . . ,xn, and Y is build analogously. Recently there
have been proposed many variants of DMD. For example,
extensions of DMD using nonlinear basis functions [14]
or the kernel method [15], [16], [17] are widely utilized.
The proposed method in this work is based on probabilistic
DMD [9], which is a probabilistic model whose maximum-
likelihood solution coincides with the solution of DMD under
some conditions.

III. FACTORIALLY-SWITCHING DMD
In this work, we developed a probabilistic model for

conducting DMD for time-varying dynamical systems. We
refer to the proposed model as factorially-switching DMD

(FSDMD) as each dynamic mode is adaptively turned “on”
and “off” and the “on-off” states of multiple modes deter-
mine the overall switching state of the system. In this section,
we describe the generative process of data in FSDMD, which
is shown as a graphical model in Figure 1. The inference
procedures are deferred to the next section.

A. Observation Model

Let (xi 2 Cm, yi 2 Cm) be the i-th pair of snapshots
(i = 1, . . . , n). The observation model (likelihood) is

p(xi,yi | �i, i) = p(xi | �i)p(yi |  i), (4)
p(xi | �i) = CNxi

�
W�i,�

2I
�
, (5)

p(yi |  i) = CN yi

�
W⇤ i,�

2I
�
, (6)

where �, 2 Cr are intermediate latent variables, and r
denotes the total number of dynamic modes. W 2 Cm⇥r is a
matrix whose columns comprise dynamic modes, ⇤ 2 Cr⇥r

is a diagonal matrix whose diagonal elements � = diag(⇤)
comprise eigenvalues, and �2 is the observation noise vari-
ance. We refer to W , �, and �2 as model parameters

and denote the set of them by ✓ in the sequel. Moreover,
CNx (m,V ) denotes the complex normal distribution on x
with mean m and covariance V . Note that this definition
of the observation model is almost identical to the one of
probabilistic DMD [9]; the difference lies in the formulation
of the latent variables, here � and  , which is manifested
below.

B. Priors

The priors on � and  are defined using the two-level

spike-and-slab model, i.e.,

p (�j,i | 'j,i, z�,j,i)

= (1� z�,j,i) �(�j,i) + z�,j,i�(�j,i�'j,i),
(7)

p ( j,i | 'j,i, z ,j,i)

= (1� z ,j,i) �( j,i) + z ,j,i�( j,i � 'j,i),
(8)

p('j,i) = CN'j,i(0, 1), (9)

where �j,i denotes the j-th element of �i for j = 1, . . . , r,
and �(·) is the Dirac delta function. Here, ' is the latent
variable corresponding to the values of Koopman eigenfunc-
tions, and z�, z 2 {0, 1} are latent variables for controlling
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Fig. 1: Graphical model of FSDMD for two slices i and i+1.
The gray nodes are observed random variables, the white
nodes are hidden random variables, and ✓ denotes the set of
model parameters. The arrows between nodes denote their
dependency. The thick edge between � means a dependency
modeled by GP.

“on-off” of each mode at each timestep. For instance, if
z�,j,i = z ,j,i = 1, wj is a valid dynamic mode for the
system at time i. If z�,j,i = z ,j,i = 0, wj does not
contribute as a dynamic mode at time i. Furthermore, if
z�,j,i = 1 and z ,j,i = 0, the j-th mode turns from “on”
to “off” within the observation interval of the i-th snapshot
pair, and vice versa.

The “on-off” latent variables, z� and z , are usually not
independent because snapshots in a pair are taken with a
fixed interval and the snapshot pairs are generally ordered
like a time-series. Therefore, the priors on z� and z should
be structured according to the underlying dependency. To
this end, we use the formulation proposed by Andersen
et al. [18], [19], which utilizes Gaussian processes (GPs)
for setting structured priors on z� and z as follows:

p(zj | �j) =
2nY

i=1

Bzj,i (�(�j,i)) , (10)

p(�j) = N�j (µj1,⌃j) . (11)

Here, zj = [z�,j,1 z ,j,1 · · · z�,j,n z ,j,n]
T
2 {0, 1}2n and

�j 2 R2n. Moreover, Bz(·) means the Bernoulli distribution
on z, �(·) is the cumulative distribution function of the
standard normal distribution, and 1 denotes a column vector
filled with ones. The mean of GP, µj 2 R, determines the
bias in z·,j,·, i.e., z tends to be zero if µj < 0 and tends
to be one if µj > 0. ⌃j is the covariance matrix of GP,
and its (i1, i2)-th element is determined with the value of
a positive semidefinite kernel kj(i1, i2), where i1 and i2
denote timestamps of two snapshots. Basically, the value of
µ and the type of k(i1, i2) should be chosen by the user.
Meanwhile, we provide an empirical Bayes update rule of µ
in Section IV.

C. Assumptions for Fast GP Inference

The inference with a general covariance matrix of GP may
be prohibitively slow due to its inversion. However, in our
case, it can be sped up with the following two assumptions.

6d�6dÆ\
Ļòóî ľ ļ

g � F � · · · � F| {z }
c

(·) =
1X

j=1

�c
j'j(·)vj

g = [g1 · · · gp]
> gi 2 H

,r�ĀýÁĂ

{�ğĺęĀý¾��ŀ 6d�
aÅĦęĺĸ
1eOĽ|«�

�Å
Ħęĺĸ

®~ğĺę

Y@

…

Ļa
Å
ļ

…
…

Re

Im

systems over infinite time. To ensure the convergence property, we consider the ratio of metrics,
namely angles instead of directly considering exponential decay terms. We first give the definition in
Subsection 3.1, and then derive an estimator of the metric from finite data in Subsection 3.2.

3.1 Definition

Let Hob be a Hilbert space and M ⇢ X a subset. Let h : M ! Hob be a map, often called
an observable. We define the observable operator for h by a linear operator Lh : Hk,M ! Hob

such that h = Lh � �. We give two examples here: First, in the case of Hob = Cd and h(x) =
(g1(x), . . . , gm(x)) for some g1, . . . , gm 2 Hk, the observable operator is Lh(v) := (hgi, vi)mi=1.
This situation appears, for example, in the context of DMD, where observed data is obtained by
values of functions in RKHS. Secondly, in the case of Hob = Hk,M and h = �|M, the observable
operator is Lh(v) = v. This situation appears when we can observe the state space X , and we try to
get more detailed information by observing data sent to RKHS via the feature map.

Let Hin be a Hilbert space. we refer to Hin as an initial value space. We call a linear operator
I : Hin ! Hk,M an initial value operator on M if I is a bounded operator. Initial value operators
are regarded as expressions of initial values in terms of linear operators. In fact, in the case of
Hin = CN and let x1, . . . ,xN 2 M. Let I := (�(x1), . . . ,�(xN )) be an initial value operator on
M, which is a linear operator defined by I ((ai)Ni=1) =

P
i
ai�(xi). Let Kf be a Perron-Frobenius

operator associated with a dynamical system f : M ! M. Then for any positive integer n > 0,
we have Kn

f
I ((ai)Ni=1) =

P
i
ai�(fn(xi)), and Kn

f
I is a linear operator including information at

time n of the orbits of the dynamical system f with inital values x1, . . . ,xN .

Now, we define triples of dynamical systems. A triple of a dynamical system with respect to an
initial value space Hin and an observable space Hob is a triple (f , h,I ), where the first component
f : M ! M is a dynamical system on a subset M ⇢ X (M depends on f ) with Perron-Frobenius
operator Kf , the second component h : M ! Hob is an observable with an observable operator
Lh, and the third component I : Hin ! Hk,M is an initial value operator on M, such that for
any r � 0, the composition LhKr

fI is well-defined and a Hilbert Schmidt operator. We denote by
T (Hin,Hob) the set of triples of dynamical systems with respect to an initial value space Hin and an
observable space Hob.

For two triples D1 = (f1, h1,I1), D2 = (f2, h2,I2) 2 T (Hin,Hob), and for T,m 2 N, we first
define

KT

m
(D1, D2) := tr

 
m^ T�1X

r=0

�
Lh2K

r

f2
I2
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Lh1K

r

f1
I1

!
2 C,

where the symbol ^m is the m-th exterior product (see Appendix A). We note that since Kfi is
bounded, we regard Kfi as a unique extension of Kfi to a bounded linear operator with domain
Hk,M.
Proposition 3.1. The function KT

m
is a positive definite kernel on T (Hin,Hob).

Proof. See Appendix B

Next, for positive number " > 0, we define AT

m
with KT

m
by

AT

m
(D1, D2) := lim

✏!+0

��✏+ KT

m
(D1, D2)

��2

(✏+ KT
m
(D1, D1)) (✏+ KT

m
(D2, D2))

2 [0, 1].

We remark that for D 2 T (Hin,Hob),
�
KT

m
(D,D)

�1
T=1

is a non-negative increasing sequence.
Now, we denote by `1 the Banach space of bounded sequences of complex numbers, and define
Am : T (Hin,Hob)2 ! `1 by

Am :=
�
AT

m

�1
T=1

Moreover, we introduce Banach limits for elements of `1. The Banach limit is a bounded linear
functional B : `1 ! C satisfying B ((1)1

n=1) = 1, B ((zn)1n=1) = B ((zn+1)1n=1) for any (zn)n,
and B((zn)1n=1) � 0 for any non-negative real sequence (zn)1n=1, namely zn � 0 for all n � 1.
We remark that if (zn)n 2 `1 converges a complex number ↵, then for any Banach limit B,
B ((zn)1n=1) = ↵. The existence of the Banach limits is first introduced by Banach [1] and proved
through the Hahn-Banach theorem. In general, the Banach limit is not unique.
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Fig. 4: (a) Three snapshots from the cylinder wake dataset; the flow is at unstable equilibrium at time = 1, the wake is
occurring around time = 200, and finally a Kármán’s vortex street is clearly observed at time = 400. (b) Eigenvalues
estimated by FSDMD, numbered from 1 to 12. Conjugate eigenvalues are omitted for simplicity. (c) The upper plot shows
the estimated on-off states of the dynamic modes from #1 to #12. The lower plot shows the magnitude of the lift coefficient
around the cylinder; from this plot, we can see that the flow is transient around time = 200 and that the flow approaches
the limit cycle after time = 300. The closer the flow approaches the limit cycle, dynamic modes with the higher frequency
appear. (d) Contour plots of three dynamic modes.

priors. The inference and learning of the proposed model can
be realized with an approximative EM algorithm, where the
posterior is approximated using the expectation propagation
technique.

Several points should be explored in the future. For
example, the automatic determination of the total number
of dynamic modes can be performed more elegantly using
the techniques of Bayesian nonparametrics.

APPENDIX

A. Update of Site Approximations (3) and (4)

In this appendix, the procedures for updating the site
parameters of h̃(3)

j,i are introduced briefly (the site parameters
of h̃(4) can be updated analogously). See [22] for the general
procedures of EP.
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ĉ\(3)j,i , û\(3)
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whose parameters are again easily computed because the
distributions are in the exponential family.

B. Update of Site Approximation (5)

The outline of procedures for updating the site parameters
of h̃(5)

j,i is the same with the one for h̃(3) and h̃(4), which is
presented in Appendix A. That is, 1) we compute a cavity
distribution, 2) conduct the moment matching, and 3) update
the site parameters using the computed moments. Below we
show a summary of computations. For the derivation, readers
are recommended to see Section 4.5 of Andersen et al. [19].
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Fig. 4: (a) Three snapshots from the cylinder wake dataset; the flow is at unstable equilibrium at time = 1, the wake is
occurring around time = 200, and finally a Kármán’s vortex street is clearly observed at time = 400. (b) Eigenvalues
estimated by FSDMD, numbered from 1 to 12. Conjugate eigenvalues are omitted for simplicity. (c) The upper plot shows
the estimated on-off states of the dynamic modes from #1 to #12. The lower plot shows the magnitude of the lift coefficient
around the cylinder; from this plot, we can see that the flow is transient around time = 200 and that the flow approaches
the limit cycle after time = 300. The closer the flow approaches the limit cycle, dynamic modes with the higher frequency
appear. (d) Contour plots of three dynamic modes.

priors. The inference and learning of the proposed model can
be realized with an approximative EM algorithm, where the
posterior is approximated using the expectation propagation
technique.

Several points should be explored in the future. For
example, the automatic determination of the total number
of dynamic modes can be performed more elegantly using
the techniques of Bayesian nonparametrics.
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of h̃(4) can be updated analogously). See [22] for the general
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ĉ\(3)j,i , û\(3)
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whose parameters are again easily computed because the
distributions are in the exponential family.

B. Update of Site Approximation (5)
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j,i is the same with the one for h̃(3) and h̃(4), which is
presented in Appendix A. That is, 1) we compute a cavity
distribution, 2) conduct the moment matching, and 3) update
the site parameters using the computed moments. Below we
show a summary of computations. For the derivation, readers
are recommended to see Section 4.5 of Andersen et al. [19].
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Fig. 4: (a) Three snapshots from the cylinder wake dataset; the flow is at unstable equilibrium at time = 1, the wake is
occurring around time = 200, and finally a Kármán’s vortex street is clearly observed at time = 400. (b) Eigenvalues
estimated by FSDMD, numbered from 1 to 12. Conjugate eigenvalues are omitted for simplicity. (c) The upper plot shows
the estimated on-off states of the dynamic modes from #1 to #12. The lower plot shows the magnitude of the lift coefficient
around the cylinder; from this plot, we can see that the flow is transient around time = 200 and that the flow approaches
the limit cycle after time = 300. The closer the flow approaches the limit cycle, dynamic modes with the higher frequency
appear. (d) Contour plots of three dynamic modes.

priors. The inference and learning of the proposed model can
be realized with an approximative EM algorithm, where the
posterior is approximated using the expectation propagation
technique.

Several points should be explored in the future. For
example, the automatic determination of the total number
of dynamic modes can be performed more elegantly using
the techniques of Bayesian nonparametrics.
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In this appendix, the procedures for updating the site
parameters of h̃(3)

j,i are introduced briefly (the site parameters
of h̃(4) can be updated analogously). See [22] for the general
procedures of EP.
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whose parameters are again easily computed because the
distributions are in the exponential family.
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of h̃(5)

j,i is the same with the one for h̃(3) and h̃(4), which is
presented in Appendix A. That is, 1) we compute a cavity
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show a summary of computations. For the derivation, readers
are recommended to see Section 4.5 of Andersen et al. [19].
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Fig. 4: (a) Three snapshots from the cylinder wake dataset; the flow is at unstable equilibrium at time = 1, the wake is
occurring around time = 200, and finally a Kármán’s vortex street is clearly observed at time = 400. (b) Eigenvalues
estimated by FSDMD, numbered from 1 to 12. Conjugate eigenvalues are omitted for simplicity. (c) The upper plot shows
the estimated on-off states of the dynamic modes from #1 to #12. The lower plot shows the magnitude of the lift coefficient
around the cylinder; from this plot, we can see that the flow is transient around time = 200 and that the flow approaches
the limit cycle after time = 300. The closer the flow approaches the limit cycle, dynamic modes with the higher frequency
appear. (d) Contour plots of three dynamic modes.

priors. The inference and learning of the proposed model can
be realized with an approximative EM algorithm, where the
posterior is approximated using the expectation propagation
technique.

Several points should be explored in the future. For
example, the automatic determination of the total number
of dynamic modes can be performed more elegantly using
the techniques of Bayesian nonparametrics.
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Fig. 4: (a) Three snapshots from the cylinder wake dataset; the flow is at unstable equilibrium at time = 1, the wake is
occurring around time = 200, and finally a Kármán’s vortex street is clearly observed at time = 400. (b) Eigenvalues
estimated by FSDMD, numbered from 1 to 12. Conjugate eigenvalues are omitted for simplicity. (c) The upper plot shows
the estimated on-off states of the dynamic modes from #1 to #12. The lower plot shows the magnitude of the lift coefficient
around the cylinder; from this plot, we can see that the flow is transient around time = 200 and that the flow approaches
the limit cycle after time = 300. The closer the flow approaches the limit cycle, dynamic modes with the higher frequency
appear. (d) Contour plots of three dynamic modes.

priors. The inference and learning of the proposed model can
be realized with an approximative EM algorithm, where the
posterior is approximated using the expectation propagation
technique.

Several points should be explored in the future. For
example, the automatic determination of the total number
of dynamic modes can be performed more elegantly using
the techniques of Bayesian nonparametrics.

APPENDIX

A. Update of Site Approximations (3) and (4)

In this appendix, the procedures for updating the site
parameters of h̃(3)

j,i are introduced briefly (the site parameters
of h̃(4) can be updated analogously). See [22] for the general
procedures of EP.
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whose parameters are again easily computed because the
distributions are in the exponential family.

B. Update of Site Approximation (5)

The outline of procedures for updating the site parameters
of h̃(5)

j,i is the same with the one for h̃(3) and h̃(4), which is
presented in Appendix A. That is, 1) we compute a cavity
distribution, 2) conduct the moment matching, and 3) update
the site parameters using the computed moments. Below we
show a summary of computations. For the derivation, readers
are recommended to see Section 4.5 of Andersen et al. [19].
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Fig. 4: (a) Three snapshots from the cylinder wake dataset; the flow is at unstable equilibrium at time = 1, the wake is
occurring around time = 200, and finally a Kármán’s vortex street is clearly observed at time = 400. (b) Eigenvalues
estimated by FSDMD, numbered from 1 to 12. Conjugate eigenvalues are omitted for simplicity. (c) The upper plot shows
the estimated on-off states of the dynamic modes from #1 to #12. The lower plot shows the magnitude of the lift coefficient
around the cylinder; from this plot, we can see that the flow is transient around time = 200 and that the flow approaches
the limit cycle after time = 300. The closer the flow approaches the limit cycle, dynamic modes with the higher frequency
appear. (d) Contour plots of three dynamic modes.

priors. The inference and learning of the proposed model can
be realized with an approximative EM algorithm, where the
posterior is approximated using the expectation propagation
technique.

Several points should be explored in the future. For
example, the automatic determination of the total number
of dynamic modes can be performed more elegantly using
the techniques of Bayesian nonparametrics.

APPENDIX

A. Update of Site Approximations (3) and (4)

In this appendix, the procedures for updating the site
parameters of h̃(3)

j,i are introduced briefly (the site parameters
of h̃(4) can be updated analogously). See [22] for the general
procedures of EP.
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ĉ\(3)j,i , û\(3)

j,i

⌘
· Bz0

j,i

⇣
�(b̂\(3)j,i )

⌘
,

whose parameters, m̂\(3), v̂\(3) ĉ\(3), û\(3), and b̂\(3) can
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whose parameters are again easily computed because the
distributions are in the exponential family.

B. Update of Site Approximation (5)

The outline of procedures for updating the site parameters
of h̃(5)

j,i is the same with the one for h̃(3) and h̃(4), which is
presented in Appendix A. That is, 1) we compute a cavity
distribution, 2) conduct the moment matching, and 3) update
the site parameters using the computed moments. Below we
show a summary of computations. For the derivation, readers
are recommended to see Section 4.5 of Andersen et al. [19].
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Fig. 4: (a) Three snapshots from the cylinder wake dataset; the flow is at unstable equilibrium at time = 1, the wake is
occurring around time = 200, and finally a Kármán’s vortex street is clearly observed at time = 400. (b) Eigenvalues
estimated by FSDMD, numbered from 1 to 12. Conjugate eigenvalues are omitted for simplicity. (c) The upper plot shows
the estimated on-off states of the dynamic modes from #1 to #12. The lower plot shows the magnitude of the lift coefficient
around the cylinder; from this plot, we can see that the flow is transient around time = 200 and that the flow approaches
the limit cycle after time = 300. The closer the flow approaches the limit cycle, dynamic modes with the higher frequency
appear. (d) Contour plots of three dynamic modes.

priors. The inference and learning of the proposed model can
be realized with an approximative EM algorithm, where the
posterior is approximated using the expectation propagation
technique.

Several points should be explored in the future. For
example, the automatic determination of the total number
of dynamic modes can be performed more elegantly using
the techniques of Bayesian nonparametrics.

APPENDIX
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In this appendix, the procedures for updating the site
parameters of h̃(3)

j,i are introduced briefly (the site parameters
of h̃(4) can be updated analogously). See [22] for the general
procedures of EP.
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j,i + ĉ\(3)j,i

¯̂c\(3)j,i )(I0 � Iz1 ),

where I0 is the zeroth moment, Iz1 is the first moment with
regard to z0, and the other quantities are analogously defined.
Finally, update h̃(3)

j,i by
⇣
h̃(3)
j,i

⌘new
/

q⇤

q\(3)j,i

,

whose parameters are again easily computed because the
distributions are in the exponential family.

B. Update of Site Approximation (5)

The outline of procedures for updating the site parameters
of h̃(5)

j,i is the same with the one for h̃(3) and h̃(4), which is
presented in Appendix A. That is, 1) we compute a cavity
distribution, 2) conduct the moment matching, and 3) update
the site parameters using the computed moments. Below we
show a summary of computations. For the derivation, readers
are recommended to see Section 4.5 of Andersen et al. [19].
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[11], [12], [13]. DMD basically computes the eigende-
composition of Y X†, where the columns of X comprise
x1, . . . ,xn, and Y is build analogously. Recently there
have been proposed many variants of DMD. For example,
extensions of DMD using nonlinear basis functions [14]
or the kernel method [15], [16], [17] are widely utilized.
The proposed method in this work is based on probabilistic
DMD [9], which is a probabilistic model whose maximum-
likelihood solution coincides with the solution of DMD under
some conditions.

III. FACTORIALLY-SWITCHING DMD
In this work, we developed a probabilistic model for

conducting DMD for time-varying dynamical systems. We
refer to the proposed model as factorially-switching DMD

(FSDMD) as each dynamic mode is adaptively turned “on”
and “off” and the “on-off” states of multiple modes deter-
mine the overall switching state of the system. In this section,
we describe the generative process of data in FSDMD, which
is shown as a graphical model in Figure 1. The inference
procedures are deferred to the next section.

A. Observation Model

Let (xi 2 Cm, yi 2 Cm) be the i-th pair of snapshots
(i = 1, . . . , n). The observation model (likelihood) is

p(xi,yi | �i, i) = p(xi | �i)p(yi |  i), (4)
p(xi | �i) = CNxi

�
W�i,�

2I
�
, (5)

p(yi |  i) = CN yi

�
W⇤ i,�

2I
�
, (6)

where �, 2 Cr are intermediate latent variables, and r
denotes the total number of dynamic modes. W 2 Cm⇥r is a
matrix whose columns comprise dynamic modes, ⇤ 2 Cr⇥r

is a diagonal matrix whose diagonal elements � = diag(⇤)
comprise eigenvalues, and �2 is the observation noise vari-
ance. We refer to W , �, and �2 as model parameters

and denote the set of them by ✓ in the sequel. Moreover,
CNx (m,V ) denotes the complex normal distribution on x
with mean m and covariance V . Note that this definition
of the observation model is almost identical to the one of
probabilistic DMD [9]; the difference lies in the formulation
of the latent variables, here � and  , which is manifested
below.

B. Priors

The priors on � and  are defined using the two-level

spike-and-slab model, i.e.,

p (�j,i | 'j,i, z�,j,i)

= (1� z�,j,i) �(�j,i) + z�,j,i�(�j,i�'j,i),
(7)

p ( j,i | 'j,i, z ,j,i)

= (1� z ,j,i) �( j,i) + z ,j,i�( j,i � 'j,i),
(8)

p('j,i) = CN'j,i(0, 1), (9)

where �j,i denotes the j-th element of �i for j = 1, . . . , r,
and �(·) is the Dirac delta function. Here, ' is the latent
variable corresponding to the values of Koopman eigenfunc-
tions, and z�, z 2 {0, 1} are latent variables for controlling

xi yi

�i  i

'i

zi

xi+1 yi+1

�i+1  i+1

'i+1

zi+1

�i �i+1

✓

Fig. 1: Graphical model of FSDMD for two slices i and i+1.
The gray nodes are observed random variables, the white
nodes are hidden random variables, and ✓ denotes the set of
model parameters. The arrows between nodes denote their
dependency. The thick edge between � means a dependency
modeled by GP.

“on-off” of each mode at each timestep. For instance, if
z�,j,i = z ,j,i = 1, wj is a valid dynamic mode for the
system at time i. If z�,j,i = z ,j,i = 0, wj does not
contribute as a dynamic mode at time i. Furthermore, if
z�,j,i = 1 and z ,j,i = 0, the j-th mode turns from “on”
to “off” within the observation interval of the i-th snapshot
pair, and vice versa.

The “on-off” latent variables, z� and z , are usually not
independent because snapshots in a pair are taken with a
fixed interval and the snapshot pairs are generally ordered
like a time-series. Therefore, the priors on z� and z should
be structured according to the underlying dependency. To
this end, we use the formulation proposed by Andersen
et al. [18], [19], which utilizes Gaussian processes (GPs)
for setting structured priors on z� and z as follows:

p(zj | �j) =
2nY

i=1

Bzj,i (�(�j,i)) , (10)

p(�j) = N�j (µj1,⌃j) . (11)

Here, zj = [z�,j,1 z ,j,1 · · · z�,j,n z ,j,n]
T
2 {0, 1}2n and

�j 2 R2n. Moreover, Bz(·) means the Bernoulli distribution
on z, �(·) is the cumulative distribution function of the
standard normal distribution, and 1 denotes a column vector
filled with ones. The mean of GP, µj 2 R, determines the
bias in z·,j,·, i.e., z tends to be zero if µj < 0 and tends
to be one if µj > 0. ⌃j is the covariance matrix of GP,
and its (i1, i2)-th element is determined with the value of
a positive semidefinite kernel kj(i1, i2), where i1 and i2
denote timestamps of two snapshots. Basically, the value of
µ and the type of k(i1, i2) should be chosen by the user.
Meanwhile, we provide an empirical Bayes update rule of µ
in Section IV.

C. Assumptions for Fast GP Inference

The inference with a general covariance matrix of GP may
be prohibitively slow due to its inversion. However, in our
case, it can be sped up with the following two assumptions.

[11], [12], [13]. DMD basically computes the eigende-
composition of Y X†, where the columns of X comprise
x1, . . . ,xn, and Y is build analogously. Recently there
have been proposed many variants of DMD. For example,
extensions of DMD using nonlinear basis functions [14]
or the kernel method [15], [16], [17] are widely utilized.
The proposed method in this work is based on probabilistic
DMD [9], which is a probabilistic model whose maximum-
likelihood solution coincides with the solution of DMD under
some conditions.

III. FACTORIALLY-SWITCHING DMD
In this work, we developed a probabilistic model for

conducting DMD for time-varying dynamical systems. We
refer to the proposed model as factorially-switching DMD

(FSDMD) as each dynamic mode is adaptively turned “on”
and “off” and the “on-off” states of multiple modes deter-
mine the overall switching state of the system. In this section,
we describe the generative process of data in FSDMD, which
is shown as a graphical model in Figure 1. The inference
procedures are deferred to the next section.

A. Observation Model

Let (xi 2 Cm, yi 2 Cm) be the i-th pair of snapshots
(i = 1, . . . , n). The observation model (likelihood) is
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where �, 2 Cr are intermediate latent variables, and r
denotes the total number of dynamic modes. W 2 Cm⇥r is a
matrix whose columns comprise dynamic modes, ⇤ 2 Cr⇥r

is a diagonal matrix whose diagonal elements � = diag(⇤)
comprise eigenvalues, and �2 is the observation noise vari-
ance. We refer to W , �, and �2 as model parameters

and denote the set of them by ✓ in the sequel. Moreover,
CNx (m,V ) denotes the complex normal distribution on x
with mean m and covariance V . Note that this definition
of the observation model is almost identical to the one of
probabilistic DMD [9]; the difference lies in the formulation
of the latent variables, here � and  , which is manifested
below.

B. Priors

The priors on � and  are defined using the two-level

spike-and-slab model, i.e.,
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where �j,i denotes the j-th element of �i for j = 1, . . . , r,
and �(·) is the Dirac delta function. Here, ' is the latent
variable corresponding to the values of Koopman eigenfunc-
tions, and z�, z 2 {0, 1} are latent variables for controlling
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Fig. 1: Graphical model of FSDMD for two slices i and i+1.
The gray nodes are observed random variables, the white
nodes are hidden random variables, and ✓ denotes the set of
model parameters. The arrows between nodes denote their
dependency. The thick edge between � means a dependency
modeled by GP.

“on-off” of each mode at each timestep. For instance, if
z�,j,i = z ,j,i = 1, wj is a valid dynamic mode for the
system at time i. If z�,j,i = z ,j,i = 0, wj does not
contribute as a dynamic mode at time i. Furthermore, if
z�,j,i = 1 and z ,j,i = 0, the j-th mode turns from “on”
to “off” within the observation interval of the i-th snapshot
pair, and vice versa.

The “on-off” latent variables, z� and z , are usually not
independent because snapshots in a pair are taken with a
fixed interval and the snapshot pairs are generally ordered
like a time-series. Therefore, the priors on z� and z should
be structured according to the underlying dependency. To
this end, we use the formulation proposed by Andersen
et al. [18], [19], which utilizes Gaussian processes (GPs)
for setting structured priors on z� and z as follows:

p(zj | �j) =
2nY

i=1

Bzj,i (�(�j,i)) , (10)

p(�j) = N�j (µj1,⌃j) . (11)

Here, zj = [z�,j,1 z ,j,1 · · · z�,j,n z ,j,n]
T
2 {0, 1}2n and

�j 2 R2n. Moreover, Bz(·) means the Bernoulli distribution
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and its (i1, i2)-th element is determined with the value of
a positive semidefinite kernel kj(i1, i2), where i1 and i2
denote timestamps of two snapshots. Basically, the value of
µ and the type of k(i1, i2) should be chosen by the user.
Meanwhile, we provide an empirical Bayes update rule of µ
in Section IV.
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The inference with a general covariance matrix of GP may
be prohibitively slow due to its inversion. However, in our
case, it can be sped up with the following two assumptions.
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“on-off” of each mode at each timestep. For instance, if
z�,j,i = z ,j,i = 1, wj is a valid dynamic mode for the
system at time i. If z�,j,i = z ,j,i = 0, wj does not
contribute as a dynamic mode at time i. Furthermore, if
z�,j,i = 1 and z ,j,i = 0, the j-th mode turns from “on”
to “off” within the observation interval of the i-th snapshot
pair, and vice versa.

The “on-off” latent variables, z� and z , are usually not
independent because snapshots in a pair are taken with a
fixed interval and the snapshot pairs are generally ordered
like a time-series. Therefore, the priors on z� and z should
be structured according to the underlying dependency. To
this end, we use the formulation proposed by Andersen
et al. [18], [19], which utilizes Gaussian processes (GPs)
for setting structured priors on z� and z as follows:
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T
2 {0, 1}2n and

�j 2 R2n. Moreover, Bz(·) means the Bernoulli distribution
on z, �(·) is the cumulative distribution function of the
standard normal distribution, and 1 denotes a column vector
filled with ones. The mean of GP, µj 2 R, determines the
bias in z·,j,·, i.e., z tends to be zero if µj < 0 and tends
to be one if µj > 0. ⌃j is the covariance matrix of GP,
and its (i1, i2)-th element is determined with the value of
a positive semidefinite kernel kj(i1, i2), where i1 and i2
denote timestamps of two snapshots. Basically, the value of
µ and the type of k(i1, i2) should be chosen by the user.
Meanwhile, we provide an empirical Bayes update rule of µ
in Section IV.

C. Assumptions for Fast GP Inference

The inference with a general covariance matrix of GP may
be prohibitively slow due to its inversion. However, in our
case, it can be sped up with the following two assumptions.
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