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Objectives 
‣ Study the underlying principle of tensor methods 
‣ Develop the advanced machine learning technology using 

tensor representation and decomposition 
‣ Explore the potential applications of tensor methods 

Members 
‣ Postdoc researcher (2), Part-timer (2) 
‣ Visiting researcher (4) 
‣ Student intern (4)

Tensor Networks for Data Representation
Tensor decomposition model, theory and algorithm 
‣ Tensor ring decomposition model for high-dimensional data with 

an efficient and compact representation [ICASSP’19] 

‣ Scalable tensor ring algorithms for large-scale data using the 

sketching trick [ICASSP’19] 

‣ Reshuffled tensor decomposition for exact recovery of latent 

components with theoretical guarantee 

Data imputation via tensor completion 
‣ Improve generalization ability of the missing value prediction for 

a high-order tensor by imposing the proper regularizer on the 

latent cores [AAAI’19] 

‣ Scalable algorithms based on tensor ring model for large-scale 

data imputation using SGD optimization 

‣ Theoretical analysis on consistency of matrix/tensor completion 

under the multiple linear transformations [CVPR’19, Oral] 

Tensor Networks for Model Representation
Deep multi-task learning with heterogenous networks 
via tensor ring network 
‣ Multiple sources/modalities of data 
‣ Heterogenous network structure for each individual task 
‣ Flexible information sharing mechanism  

Compression of model parameters by random shuffling 
low-rank representation [ICASSP’19] 
‣ Discover that convolutional kernels can be 

compressed by randomly-shuffled low-rank 
representation without significant 
performance loss.   

Positive-unlabelled learning with 
generative adversarial networks 
[IJCAI’18] 
‣ Integration of multiple deep generative 

models based on GAN to perform PU 
learning, which requires less labelled positive data

AI Support for Epileptic Diagnosis

Achievements in FY2018
Publications (32 papers) 
‣ Conference (19) including AAAI, IJCAI, CVPR, ICASSP, NeurIPS Workshop, 

ICLR workshop and etc 
‣ Journal (13) including IEEE TNNLS, Signal Processing and etc 

Award 
‣ The 3rd IEEE SPS Japan Best Paper Award 
‣ 2018 SPS Signal Processing Magazine Best Paper

順天堂

Health 
zone

Epileptic 
zone

Focal

Situation: Doctors 
diagnose epilepsy 
by visual judgment 
based on iEEG.

‣High accuracy 
Entropies of different frequency 

bands for feature extraction and 
CNN for classification 

‣End to end model 
Discovery of iEEG focal without 

handcraft feature extraction 

‣ Less labels 
Only need a few 

labelled data by 
PU learning Positive Unlabeled

PU learning

Future work: reliability and universality

Mission: Automatic localization of epileptic focal from 
iEEG signals as a support technology for doctors
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Figure 1: The effects of noise corrupted tensor cores. From left to right, each figure shows noise
corruption by adding noise to one specific tensor core.

Tn1

nd · · ·

nk

· · ·n2

= Z1

Zd · · ·

Zk

· · ·Z2

n1

nd · · ·

nk

· · ·n2

r1

r2

rd

rk+1

rk

r3

Figure 2: A graphical representation of tensor ring decomposition.

limited representation ability and flexibility; ii) TT-ranks are bounded by the rank of k-unfolding
matricization, which might not be optimal; iii) the permutation of data tensor will yield an inconsistent
solution, i.e., TT representations and TT-ranks are sensitive to the order of tensor dimensions. Hence,
finding the optimal permutation remains a challenging problem.

In this paper, we introduce a new structure of tensor networks, which can be considered as a
generalization of TT representations. First of all, we relax the condition over TT-ranks, i.e., r1 =
rd+1 = 1, leading to an enhanced representation ability. Secondly, the strict ordering of multilinear
products between cores should be alleviated. Third, the cores should be treated equivalently by
making the model symmetric. To this end, we add a new connection between the first and the last
core tensors, yielding a circular tensor products of a set of cores (see Fig. 2). More specifically, we
consider that each tensor element is approximated by performing a trace operation over the sequential
multilinear products of cores. Since the trace operation ensures a scalar output, r1 = rd+1 = 1 is
not necessary. In addition, the cores can be circularly shifted and treated equivalently due to the
properties of the trace operation. We call this model tensor ring (TR) decomposition and its cores
tensor ring (TR) representations. To learn TR representations, we firstly develop a non-iterative
TR-SVD algorithm that is similar to TT-SVD algorithm (Oseledets, 2011). To find the optimal lower
TR-ranks, a block-wise ALS algorithms is presented. Finally, we also propose a scalable algorithm
by using stochastic gradient descend, which can be applied to handling large-scale datasets.

Another interesting contribution is that we show the intrinsic structure or high order correlations
within a 2D image can be captured more efficiently than SVD by converting 2D matrix to a higher
order tensor. For example, given an image of size I ⇥ J , we can apply an appropriate tensorization
operation (see details in Sec. 5.2) to obtain a fourth order tensor, of which each mode controls one
specific scale of resolution. To demonstrate this, Fig. 1 shows the effects caused by noise corruption
of specific tensor cores. As we can see, the first mode corresponds to the small-scale patches, while
the 4th-mode corresponds to the large-scale partitions. We have shown in Sec. 5.2 that TR model can
represent the image more efficiently than the standard SVD.

2 TENSOR RING DECOMPOSITION

The TR decomposition aims to represent a high-order (or multi-dimensional) tensor by a sequence
of 3rd-order tensors that are multiplied circularly. Specifically, let T be a dth-order tensor of size
n1⇥n2⇥ · · ·⇥nd, denoted by T 2 Rn1⇥···⇥nd , TR representation is to decompose it into a sequence
of latent tensors Zk 2 Rrk⇥nk⇥rk+1 , k = 1, 2, . . . , d, which can be expressed in an element-wise
form given by

T (i1, i2, . . . , id) = Tr {Z1(i1)Z2(i2) · · ·Zd(id)} = Tr

(
dY

k=1

Zk(ik)

)
. (1)
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Figure 1: The overall sharing mechanism of MRN, two variants of DMTRL (for the case of CNN)
and our TRMTL w.r.t. two tasks. The shared portion is depicted in yellow. The circles, squares and
thin rectangles represent tensor cores, matrices and vectors, respectively. MRN: original weights are
totally shared at the lower layers and the relatedness between tasks at the top layers is modeled by
tensor normal priors. DMTRL (TT or Tucker): all layer-wise weights must be equal-sized so as to
be stacked and decomposed into factors. For each task, almost all the factors are shard at each layer
except the very last 1D vector. Such pattern of sharing is identical at all layers. TRMTL: layer-wise
weights are separately encoded into TR-formats for different tasks, and a subset of latent cores are
selected to be tied across two tasks. The portions of sharing can be different from layer to layer.

mobile phones and wearable computers. For this reason, Yang & Hospedales (2017) integrated ten-
sor factorization with deep MTL and proposed deep multi-task representation learning (DMTRL).
Specifically, they first stack up the layer-wise weights from all tasks and then decompose them into
low-rank factors, resulting in a succinct deep MTL model with fewer parameters. Despite the com-
pactness of the model, DMTRL turns out to be rather restricted on sharing knowledge effectively.
This is because, as shown in Figure 1, DMTRL (TT or Tucker) shares almost all the fractions of
weights as common factors, only leaving a tiny portion of weights to encode the task-specific in-
formation. Even worse, such pattern of sharing must be identical across all hidden layers, which
is vulnerable to negative transfer of the features. As an effect, the common factors become highly
dominant at each layer and greatly suppress model’s capability in expressing task-specific variations.

The last challenge arises from the flexibility of architecture in deep MTL. Most of deep MTL models
force tasks to have the equal-sized layer-wise weights or input dimensionality. This restriction makes
little sense for the case of loosely-related tasks, since individual tasks’ features (input data) can be
quite different and the sizes of layer-wise features (input data) may vary a lot from task to task.

In this work, we provide a generalized latent-subspace based solution to addressing aforementioned
difficulties of deep MTL, from the aspects of effectiveness, efficiency and flexibility. Regarding the
effectiveness, we propose to share different portions of weights as common knowledge at distinct
layers, so that each individual task can better convey its private knowledge. As for the efficiency,
our proposal shares knowledge in the latent subspace instead of original space by utilizing a general
tensor ring (TR) representation with a sequence of latent cores (Zhao et al., 2016; 2017). One
motivation is that TR generalizes other chain structured tensor networks, especially tensor train
(TT) format (Oseledets, 2011), in terms of model expressivity power, i.e., TR can be formulated as a
sum of TT networks. On the other hand, TR is able to approximate tensors using lower overall ranks
than TT does (Zhao et al., 2016), thus yielding a more compact and sparsely-connected model with
significantly less parameters for deep MTL. Adopting TR-format with lower ranks could bring more
benefits to deep MTL if we tensorize a layer-wise weight of each task into a higher-order weight
tensor, as the weight can be decomposed into a relatively larger number but smaller-sized cores. This
in turn facilitates the sharing of cores at a finer granularity and further enhance the effectiveness of
sharing. Additionally, Zhao et al. (2017) observed that different cores control different levels of
correlations in tensor data, e.g. for a tensorized image, each core affects one specific scale of the
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Figure 1: Our GenPU framework. Dp receives as inputs the real
positive examples from Xp and the synthetic positive examples from
Gp; Dn receives as inputs the real positive examples from Xp and
the synthetic negative examples from Gn; Du receives as inputs real
unlabeled examples from Xu, synthetic positive examples from Gp

as well as synthetic negative examples from Gn at the same time.
Associated with different loss functions, Gp and Gn are designated
to generate positive and negative examples, respectively.

3.2 Proposed GenPU Model

We build our GenPU model upon GAN by leveraging its po-
tentiality in producing realistic data, with the goal of iden-
tification of both positive and negative distributions from P
and U data. Then, a decision boundary can be made by train-
ing standard PN classifier on the generated samples. Figure 1
illustrates the architecture of the proposed framework.

In brief, GenPU framework is an analogy to a minimax
game comprising of two generators {Gp, Gn} and three dis-
criminators {Dp, Du, Dn}. Guided by the adversarial super-
vision of {Dp, Du, Dn}, {Gp, Gn} are tasked with synthe-
sizing positive and negative samples that are indistinguish-
able with the real ones drawn from {pp(x), pn(x)}, respec-
tively. As being their competitive opponents, {Dp, Du, Dn}

are devised to play distinct roles in instructing the learning
process of {Gp, Gn}.

More formally, the overall GenPU objective function can
be decomposed, in views of Gp and Gn, as follows :

 (Gp, Gn, Dp, Du, Dn) = ⇡p�Gp,Dp,Du

+ ⇡n�Gn,Du,Dn , (3)

where ⇡p and ⇡n corresponding to Gp and Gn are the priors
for positive class and negative class, satisfying ⇡p + ⇡n = 1.
Here, we assume ⇡p and ⇡n are predetermined and fixed.

The first term linked with Gp in (3) can be further split into
two standard GAN components GANGp,Dp and GANGp,Du :

�Gp,Dp,Du = �p min
Gp

max
Dp

VGp,Dp(G, D)

+ �u min
Gp

max
Du

VGp,Du(G, D), (4)

where �p and �u are the weights balancing the relative impor-
tance of effects between Dp and Du. In particular, the value

functions of GANGp,Dp and GANGp,Du are

VGp,Dp(G, D) = Ex⇠pp(x) log(Dp(x))

+ Ez⇠pz(z) log(1 � Dp(Gp(z))) (5)

and

VGp,Du(G, D) = Ex⇠pu(x) log(Du(x))

+ Ez⇠pz(z) log(1 � Du(Gp(z))). (6)

On the other hand, the second term linked with Gn in (3)
can also be split into GAN components, namely GANGn,Du

and GANGn,Dn :

�Gn,Du,Dn = �u min
Gn

max
Du

VGn,Du(G, D)

+ �n max
Gn

max
Dn

VGn,Dn(G, D), (7)

whose weights �u and �n control the trade-off between Du

and Dn. GANGn,Du also takes the form of the standard GAN
with the value function

VGn,Du(G, D) = Ex⇠pu(x) log(Du(x))

+ Ez⇠pz(z) log(1 � Du(Gn(z))). (8)

The value function of GANGn,Dn is given by

VGn,Dn(G, D) = Ex⇠pp(x) log(Dn(x))

+ Ez⇠pz(z) log(1 � Dn(Gn(z))). (9)

In contrast to the ‘zero-sum’ loss applied elsewhere, the op-
timization of GANGn,Dn is given by first maximizing (9) to
obtain the optimal D?

n as

D?
n = arg max

Dn

Ex⇠pp(x) log(Dn(x))

+ Ez⇠pz(z) log(1 � Dn(Gn(z))), (10)

then plugging D?
n into the value function (9), and finally min-

imizing �VGn,D?
n
(G, D?

n) instead of VGn,D?
n
(G, D?

n) to get
the optimal G?

n as

G?
n = arg min

Gn

�VGn,D?
n
(G, D?

n). (11)

Such modification makes GANGn,Dn different from the stan-
dard GAN, and this is reflected by the second term of (7).

Intuitively, (5)-(6) indicate Gp, co-supervised under both
Dp and Du, endeavours to minimize the distance between
the induced distribution pgp(x) and positive data distribution
pp(x), while striving to stay around within the whole data
distribution p(x). In fact, Gp tries to deceive both discrimi-
nators by simultaneously maximizing Dp’s and Du’s outputs
on fake positive samples. As a result, the loss terms in (5) and
(6) jointly guide pgp(x) gradually moves towards and finally
settles to pp(x) of p(x).

Equations (8)-(11) suggest Gn, when facing both Du and
Dn, struggles to make the induced pgn(x) stay away from
pp(x), and also makes its effort to force pgn(x) to lie within
p(x). To achieve this, the objective in (11) favors Gn to pro-
duce negative examples; this in turn helps Dn to maximize
the objective in (10) to separate positive training samples

Input WeightInput Weight

Output Output

(a) before compression (b) after compression


