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Goal: To design AI that can continually learn using Bayesian principles.

Examples: Uncertainty: Knowing how much we don’t know, is useful to design
• Robots that can understand and reason about their environments.
• Methods that improve performance of deep-learning methods.

Challenge: Computation of the posterior distribution is difficult

Main Idea: Approximate integration by using optimization, and design simple 

algorithms that can be implemented within existing deep learning frameworks

Taken from
 Kendall et al. 2017
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Figure 1: Illustrating the difference between aleatoric and epistemic uncertainty for semantic segmentation
on the CamVid dataset [8]. Aleatoric uncertainty captures noise inherent in the observations. In (d) our model
exhibits increased aleatoric uncertainty on object boundaries and for objects far from the camera. Epistemic

uncertainty accounts for our ignorance about which model generated our collected data. This is a notably
different measure of uncertainty and in (e) our model exhibits increased epistemic uncertainty for semantically
and visually challenging pixels. The bottom row shows a failure case of the segmentation model when the
model fails to segment the footpath due to increased epistemic uncertainty, but not aleatoric uncertainty.

which captures our ignorance about which model generated our collected data. This uncertainty
can be explained away given enough data, and is often referred to as model uncertainty. Aleatoric
uncertainty can further be categorized into homoscedastic uncertainty, uncertainty which stays con-
stant for different inputs, and heteroscedastic uncertainty. Heteroscedastic uncertainty depends on
the inputs to the model, with some inputs potentially having more noisy outputs than others. Het-
eroscedastic uncertainty is especially important for computer vision applications. For example, for
depth regression, highly textured input images with strong vanishing lines are expected to result in
confident predictions, whereas an input image of a featureless wall is expected to have very high
uncertainty.

In this paper we make the observation that in many big data regimes (such as the ones common
to deep learning with image data), it is most effective to model aleatoric uncertainty, uncertainty
which cannot be explained away. This is in comparison to epistemic uncertainty which is mostly
explained away with the large amounts of data often available in machine vision. We further show
that modeling aleatoric uncertainty alone comes at a cost. Out-of-data examples, which can be
identified with epistemic uncertainty, cannot be identified with aleatoric uncertainty alone.

For this we present a unified Bayesian deep learning framework which allows us to learn map-
pings from input data to aleatoric uncertainty and compose these together with epistemic uncer-
tainty approximations. We derive our framework for both regression and classification applications
and present results for per-pixel depth regression and semantic segmentation tasks (see Figure 1 and
the supplementary video for examples). We show how modeling aleatoric uncertainty in regression
can be used to learn loss attenuation, and develop a complimentary approach for the classification
case. This demonstrates the efficacy of our approach on difficult and large scale tasks.

The main contributions of this work are;

1. We capture an accurate understanding of aleatoric and epistemic uncertainties, in particular
with a novel approach for classification,

2. We improve model performance by 1 � 3% over non-Bayesian baselines by reducing the
effect of noisy data with the implied attenuation obtained from explicitly representing
aleatoric uncertainty,

3. We study the trade-offs between modeling aleatoric or epistemic uncertainty by character-
izing the properties of each uncertainty and comparing model performance and inference
time.
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Fast and Simple Algorithms for Variational Inference
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Variational Inference

Maximize the Evidence Lower Bound (ELBO):

Gradient descent (GD) :

Intractable 
integral

Natural 
parameters

Parameters

Data

Variational Approximation Fisher Information Matrix (FIM)

Natural Gradient

• Fast convergence due to optimization in 
Riemannian manifold (not Euclidean space).

• But requires additional computations.
• Can we simplify/reduce this computation?

Sato 2001, Honkela et al. 2010, Hoffman et.al. 2013

NGD: 

VI with Natural-Gradient Descent

Natural Gradient wrt 
natural parameter

Gradient wrt expectation 
parameter

Sufficient statistics
Expectation/moment/
mean parameters 

For Gaussians, it’s mean and correlation matrix

A key relationship:

NGD :

Expectation Parameters

likelihood approxprior
(y �X✓)>(y �X✓) + �✓>✓
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Example: Linear Regression
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MLE vs NGD-VI

+ = ⇡

(1� �)UtU>
t �G(✓t)

fast_eig

Ut+1U>
t+1

L⇥D M ⇥D L⇥DD ⇥ L D ⇥M D ⇥ L

Figure 2: This figure illustrates Equations (6) and (7) which are used to derive SLANG.

The new covariance approximation can now be used to update µt+1 according to (2) as shown below:

SLANG: µt+1 = µt � ↵t

h
Ut+1U

>
t+1 +Dt+1

i�1
[ĝ(✓t) + �µt] , (11)

The above update uses a stochastic, low-rank covariance estimate to approximate natural-gradient
updates, which is why we use the name SLANG.

When L = D, Ut+1U
>
t+1 is full rank and SLANG is identical to the approximate natural-gradient

update (2). When L < D, SLANG produces matrices ⌃̂�1
t with diagonals matching (2) at every

iteration. The diagonal correction ensures that no diagonal information is lost during the low-rank
approximation of the covariance. A formal statement and proof is given in Appendix D.

We also tried an alternative method where Ut+1 is learned using an exponential moving-average of
the eigendecompositions of Ĝ(✓). This previous iteration of SLANG is discussed in Appendix B,
where we show that it gives worse results than the SLANG update.

Next, we give implementation details of SLANG.

3.1 Details of the SLANG Implementation

The pseudo-code for SLANG is shown in Algorithm 1 in Figure 3.

At every iteration, we generate a sample ✓t ⇠ N (✓|µt,UtU
>
t + Dt). This is implemented

in line 4 using the function fast_sample (see Algorithm 3 for a pseudo-code). This function
uses the Woodbury identity and the symmetric factorization algorithm of [4] to compute At =�
UtU

>
t + Dt

��1/2. The sample is then computed as ✓t = µt + At✏, where ✏ ⇠ N (0, I). The
function fast_sample requires computations in O(DL

2 +DLS) to generate S samples, which is
linear in D. More details are given in Appendix C.4.

Given a sample, we need to compute and store all the individual stochastic gradients gi(✓t) for all
examples i in a minibatch M. The standard back-propagation implementation does not allow this.
We instead use a version of the backpropagation algorithm outlined in a note by Goodfellow [11],
which enables efficient computation of the gradients ĝi(✓t). This is shown in line 6. More details on
the function backprop_goodfellow is given in Appendix C.1.

In line 7, we compute the eigenvalue value decomposition of (1� �t)UtUt + �tĜ(✓t) by using the
fast_eig function. The function fast_eig implements a randomized eigenvalue decomposition
method discussed in [13]. It computes the top-L eigenvalue decomposition of a low-rank matrix in
O(DLMS +DL

2). More details of the function is given in Appendix C.2. The matrix Ut+1 and
Dt+1 are updated using the eigenvalue decomposition in lines 8, 9 and 10.

In lines 11 and 12, we compute the update vector [Ut+1U
>
t+1 + Dt+1]�1 [ĝ(✓t) + �µt], which

requires solving a linear system. We use the function fast_inverse shown in Algorithm 2. This
function uses the Woodbury identity to efficiently compute the inverse with a cost O(DL

2). More
details are given in Appendix C.3. Finally, in line 13, we update µt+1.

The overall computational complexity of SLANG is O(DL
2 + DLMS) and its memory cost is

O(DL+DMS). Both are linear in D and M . The cost is quadratic in L, but since L ⌧ D (e.g., 5
or 10), this only adds a small multiplicative constant in the runtime. SLANG reduces the cost of the
update (2) significantly while preserving some posterior correlations.
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• SLANG is linear in D!

Low-Rank + diagonal
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2 Empirical Evaluation

(a) MNIST (b) CIFAR10

Test
VOGN Adam

Log Loss 0.065 0.108
Error 2.109 1.079

Train
VOGN Adam

Log Loss 0.058 0.001
Error 1.718 0.026

Test
VOGN Adam

Log Loss 1.130 8.341
Error 37.01 40.47

Train
VOGN Adam

Log Loss 0.815 0.077
Error 27.18 2.248

Figure 2: Evaluation metrics on Train and Test sets for both optimizers. Adam overfits while VOGN
does a good job of keeping test and train errors close. VOGN outperforms Adam on CIFAR10 but
underperforms on MNIST for test accuracy. For test log loss, VOGN is better than Adam in both
cases. Model architectures given in Table 1.
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(By Anirudh Jain)

LeNet-5 on CIFAR10
Classification on USPS with BNNs

Figure 4: This figure compares the convergence behavior on two datasets: USPS 3vs5 (top) and
Breast Cancer (bottom); and two models: Bayesian logistic regression (left) and Bayesian neural
networks (BNN) (right). The three methods SLANG(1, 2, 3) refer to SLANG with L = 1, 5, 10 for
logistic regression. For BNN, they refer to SLANG with L = 8, 16, 32. The mean-field method
is a natural-gradient mean-field method for logistic regression (see text) and BBB [7] for BNN.
This comparison clearly shows that SLANG converges faster than the mean-field method, and,
for Bayesian logistic regression, matches the convergence of the full-Gaussian method when L is
increased.

Table 2: Comparison on UCI datasets using Bayesian neural networks. We repeat the setup used
in Gal and Ghahramani [10]. SLANG uses L = 1, and outperforms BBB but gives comparable
performance to Dropout.

Test RMSE Test log-likelihood
Dataset BBB Dropout SLANG BBB Dropout SLANG
Boston 3.43 ± 0.20 2.97 ± 0.19 3.21 ± 0.19 -2.66 ± 0.06 -2.46 ± 0.06 -2.58 ± 0.05
Concrete 6.16 ± 0.13 5.23 ± 0.12 5.58 ± 0.19 -3.25 ± 0.02 -3.04 ± 0.02 -3.13 ± 0.03
Energy 0.97 ± 0.09 1.66 ± 0.04 0.64 ± 0.03 -1.45 ± 0.10 -1.99 ± 0.02 -1.12 ± 0.01
Kin8nm 0.08 ± 0.00 0.10 ± 0.00 0.08 ± 0.00 1.07 ± 0.00 0.95 ± 0.01 1.06 ± 0.00
Naval 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 4.61 ± 0.01 3.80 ± 0.01 4.76 ± 0.00
Power 4.21 ± 0.03 4.02 ± 0.04 4.16 ± 0.04 -2.86 ± 0.01 -2.80 ± 0.01 -2.84 ± 0.01
Wine 0.64 ± 0.01 0.62 ± 0.01 0.65 ± 0.01 -0.97 ± 0.01 -0.93 ± 0.01 -0.97 ± 0.01
Yacht 1.13 ± 0.06 1.11 ± 0.09 1.08 ± 0.06 -1.56 ± 0.02 -1.55 ± 0.03 -1.88 ± 0.01

work, we use neural networks with one hidden layer with 50 hidden units and ReLU activation
functions. We compare SLANG with L = 1 to the Bayes By Backprop (BBB) method [7] and the
Bayesian Dropout method of [10]. For the 5 smallest datasets, we used a mini-batch size of 10 and 4
Monte-Carlo samples during training. For the 3 larger datasets, we used a mini-batch size of 100
and 2 Monte-Carlo samples during training. More details are given in Appendix F.3. We report test
RMSE and test log-likelihood in Table 2. SLANG with just one rank outperforms BBB on 7 out
of 8 datasets for RMSE and on 5 out of 8 datasets for log-likelihood. Moreover, SLANG shows
comparable performance to Dropout.

Finally, we report results for classification on MNIST. We train a BNN with two hidden layers of
400 hidden units each. The training set consists of 50,000 examples and the remaining 10,000 are
used as a validation set. The test set is a separate set which consists of 10,000 examples. We use
SLANG with L = 1, 2, 4, 8, 16, 32. For each value of L, we choose the prior precision and learning
rate based on performance on the validation set. Further details can be found in Appendix F.4. The
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