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The support obtained is

An intersection of the complements of the groups set to 0 (cf. Jenatton et al.
(2009))

Not a union of groups

Sparsity tutorial II, ECML 2010, Barcelona 36/69
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Fig. 1. A comparison of DMD  with common modal decomposition algorithms on a synthetic timeseries dataset. (a) The dataset is a movie with 6400 pixels in each frame, and
this  noisy, high-dimensional time series dataset has two  underlying, overlapping patterns, a Gaussian oval and a square. Each mode also has a distinct temporal evolution
that  includes both growth/decay and oscillation. The magnitude of the noise is 0.75× the magnitude of the signals. (b) PCA derives modes that mix  the underlying modes. (c)
ICA  modes more closely resemble the generative modes, but the two  underlying modes are still mixed. (d) DMD extracts the spatial–temporal coherent modes in the movie.
These  DMD  modes closely resemble the underlying spatial modes and provide an estimate of the temporal evolution of these patterns.

2.1.2. DMD, PCA and ICA on a synthetic dataset
To build some intuition of DMD  modes, Fig. 1 compares results of

modal decomposition by PCA, independence components analysis
(ICA, Hyvärinen and Oja (2000)), and DMD  on a synthetic timeseries
dataset. The timeseries dataset is a movie 10 s in duration sampled
at 50 frames per second, where each frame is a 80 × 80 = 6400 pixel
image (so n = 6400 and m = 500). The dataset is constructed to be
the sum of two generative modes, each with a spatial pattern that
evolves according to some coherent temporal dynamics (Fig. 1a).
Mode 1 is a Gaussian oval in space that oscillates and decays in time;
Mode 2 is a square that oscillates at a lower frequency than the
oval does. The two modes are spatially overlapping. Each mode’s
magnitude is of range [−1, 1], and independent noise drawn from
a Gaussian distribution N(0,  0.75) was added at each pixel.

Fig. 1b–d shows the first two modes computed by each method.
As shown in Fig. 1b, PCA derives modes that mix  the two genera-
tive modes in Fig. 1a. These PCA modes are vectors in Rn, ordered by
their ability to explain the greatest fraction of variance in the data;
PCA assumes the data is distributed as a multi-dimensional Gauss-
ian. Fig. 1c shows that ICA can potentially do better than PCA, but the
two generative modes are still mixed. ICA mode 1 (top of Fig. 1c)
contains the Gaussian oval with a shadow of the square. Unlike
PCA, ICA modes are computed assuming the underlying signals are
non-Gaussian and statistically independent.

In contrast, DMD is an explicitly temporal decomposition
and takes the sequences of snapshots into account, deriving
spatial–temporal coherent patterns in the movie. DMD  modes are
closely related to PCA modes and also assumes variance in the data
is Gaussian. The two largest DMD  modes not only closely resem-
ble the two generative modes, but they also contain an estimate
of the temporal dynamics of the two modes, including an estimate
of their frequencies of oscillation and time constant of exponential
growth/decay. These temporal parameters are computed from the
DMD eigenvalues by Eq. (6) as explained in Section 2.4. Further,
the computational complexity of DMD  is within the same order of
magnitude as that of PCA.

2.1.3. Connections to related methods
DMD  has deep mathematical connections to Koopman spectral

analysis. The Koopman operator is an infinite-dimensional, linear

operator that represents finite-dimensional, nonlinear dynamics.
The eigenvalues and modes of the Koopman operator capture
the evolution of data measuring the nonlinear dynamical system
(Budišić et al., 2012; Mezić, 2005). DMD  is an approximation of
Koopman spectral analysis (Rowley et al., 2009), so that DMD
modes are able to describe even nonlinear systems.

As an algorithm, it is convenient to think of spatial–temporal
decomposition by DMD  as a hybrid of static mode extraction by
principal components analysis (PCA) in the spatial domain and dis-
crete Fourier transform (DFT) in the time domain. In fact, DMD
modes are a rotation of PCA space such that each basis vector has
coherent dynamics. The DMD  algorithm in Section 2.1 starts with
a SVD of the data matrix X = U!V* as the first step, where U are
identical to PCA modes. DMD  modes are eigenvectors of A = U∗AU,
so that we can think of A as the correlation between PCA modes U
and PCA modes in one time step AU. Liked the DFT, DMD  extracts
frequencies of oscillations observed in the measurements. In addi-
tion, DMD  goes beyond DFT to also estimate rates of growth/decay,
where the DFT eigenvalues always have magnitudes of exactly one.

The general formulation of the high-dimensional timeseries
problem is related to several methods in the statistics literature,
including vector autoregression (VAR, Charemza and Deadman
(1992)). DMD  differs from VAR in that the A matrix in Eq. (2) is
never explicitly estimated, but rather we seek its eigendecomposi-
tion by computing A in step 2 of the DMD  algorithm. The resultant
modes are interpreted as a low-rank dynamical system expressed
in Eq. (5). Further, these modes represent separable spatiotemporal
features of the data. Interestingly, this approach of computing A is
mathematically related to Principal Components Regression (PCR,
Jolliffe (2005)).

2.1.4. Additional properties and practical limitations
A few general properties of DMD  are interesting to note. The

data X may  be real or complex valued; in the case of recordings
from electrode arrays, we  will proceed assuming X are real val-
ued measurements of voltage. Further, the decomposition is unique
(Chen et al., 2012), and it is also possible to compute the DMD  of
non-uniformly sampled data (Tu et al., 2013 ).

The relationship of DMD  to PCA and DFT points to a few lim-
itations of the technique that guide its application. DMD  spatial
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Fig. 1. A comparison of DMD  with common modal decomposition algorithms on a synthetic timeseries dataset. (a) The dataset is a movie with 6400 pixels in each frame, and
this  noisy, high-dimensional time series dataset has two  underlying, overlapping patterns, a Gaussian oval and a square. Each mode also has a distinct temporal evolution
that  includes both growth/decay and oscillation. The magnitude of the noise is 0.75× the magnitude of the signals. (b) PCA derives modes that mix  the underlying modes. (c)
ICA  modes more closely resemble the generative modes, but the two  underlying modes are still mixed. (d) DMD extracts the spatial–temporal coherent modes in the movie.
These  DMD  modes closely resemble the underlying spatial modes and provide an estimate of the temporal evolution of these patterns.

2.1.2. DMD, PCA and ICA on a synthetic dataset
To build some intuition of DMD  modes, Fig. 1 compares results of

modal decomposition by PCA, independence components analysis
(ICA, Hyvärinen and Oja (2000)), and DMD  on a synthetic timeseries
dataset. The timeseries dataset is a movie 10 s in duration sampled
at 50 frames per second, where each frame is a 80 × 80 = 6400 pixel
image (so n = 6400 and m = 500). The dataset is constructed to be
the sum of two generative modes, each with a spatial pattern that
evolves according to some coherent temporal dynamics (Fig. 1a).
Mode 1 is a Gaussian oval in space that oscillates and decays in time;
Mode 2 is a square that oscillates at a lower frequency than the
oval does. The two modes are spatially overlapping. Each mode’s
magnitude is of range [−1, 1], and independent noise drawn from
a Gaussian distribution N(0,  0.75) was added at each pixel.

Fig. 1b–d shows the first two modes computed by each method.
As shown in Fig. 1b, PCA derives modes that mix  the two genera-
tive modes in Fig. 1a. These PCA modes are vectors in Rn, ordered by
their ability to explain the greatest fraction of variance in the data;
PCA assumes the data is distributed as a multi-dimensional Gauss-
ian. Fig. 1c shows that ICA can potentially do better than PCA, but the
two generative modes are still mixed. ICA mode 1 (top of Fig. 1c)
contains the Gaussian oval with a shadow of the square. Unlike
PCA, ICA modes are computed assuming the underlying signals are
non-Gaussian and statistically independent.

In contrast, DMD is an explicitly temporal decomposition
and takes the sequences of snapshots into account, deriving
spatial–temporal coherent patterns in the movie. DMD  modes are
closely related to PCA modes and also assumes variance in the data
is Gaussian. The two largest DMD  modes not only closely resem-
ble the two generative modes, but they also contain an estimate
of the temporal dynamics of the two modes, including an estimate
of their frequencies of oscillation and time constant of exponential
growth/decay. These temporal parameters are computed from the
DMD eigenvalues by Eq. (6) as explained in Section 2.4. Further,
the computational complexity of DMD  is within the same order of
magnitude as that of PCA.

2.1.3. Connections to related methods
DMD  has deep mathematical connections to Koopman spectral

analysis. The Koopman operator is an infinite-dimensional, linear

operator that represents finite-dimensional, nonlinear dynamics.
The eigenvalues and modes of the Koopman operator capture
the evolution of data measuring the nonlinear dynamical system
(Budišić et al., 2012; Mezić, 2005). DMD  is an approximation of
Koopman spectral analysis (Rowley et al., 2009), so that DMD
modes are able to describe even nonlinear systems.

As an algorithm, it is convenient to think of spatial–temporal
decomposition by DMD  as a hybrid of static mode extraction by
principal components analysis (PCA) in the spatial domain and dis-
crete Fourier transform (DFT) in the time domain. In fact, DMD
modes are a rotation of PCA space such that each basis vector has
coherent dynamics. The DMD  algorithm in Section 2.1 starts with
a SVD of the data matrix X = U!V* as the first step, where U are
identical to PCA modes. DMD  modes are eigenvectors of A = U∗AU,
so that we can think of A as the correlation between PCA modes U
and PCA modes in one time step AU. Liked the DFT, DMD  extracts
frequencies of oscillations observed in the measurements. In addi-
tion, DMD  goes beyond DFT to also estimate rates of growth/decay,
where the DFT eigenvalues always have magnitudes of exactly one.

The general formulation of the high-dimensional timeseries
problem is related to several methods in the statistics literature,
including vector autoregression (VAR, Charemza and Deadman
(1992)). DMD  differs from VAR in that the A matrix in Eq. (2) is
never explicitly estimated, but rather we seek its eigendecomposi-
tion by computing A in step 2 of the DMD  algorithm. The resultant
modes are interpreted as a low-rank dynamical system expressed
in Eq. (5). Further, these modes represent separable spatiotemporal
features of the data. Interestingly, this approach of computing A is
mathematically related to Principal Components Regression (PCR,
Jolliffe (2005)).

2.1.4. Additional properties and practical limitations
A few general properties of DMD  are interesting to note. The

data X may  be real or complex valued; in the case of recordings
from electrode arrays, we will proceed assuming X are real val-
ued measurements of voltage. Further, the decomposition is unique
(Chen et al., 2012), and it is also possible to compute the DMD  of
non-uniformly sampled data (Tu et al., 2013 ).

The relationship of DMD  to PCA and DFT points to a few lim-
itations of the technique that guide its application. DMD  spatial
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Fig. 1. A comparison of DMD  with common modal decomposition algorithms on a synthetic timeseries dataset. (a) The dataset is a movie with 6400 pixels in each frame, and
this  noisy, high-dimensional time series dataset has two  underlying, overlapping patterns, a Gaussian oval and a square. Each mode also has a distinct temporal evolution
that  includes both growth/decay and oscillation. The magnitude of the noise is 0.75× the magnitude of the signals. (b) PCA derives modes that mix  the underlying modes. (c)
ICA  modes more closely resemble the generative modes, but the two  underlying modes are still mixed. (d) DMD extracts the spatial–temporal coherent modes in the movie.
These  DMD  modes closely resemble the underlying spatial modes and provide an estimate of the temporal evolution of these patterns.

2.1.2. DMD, PCA and ICA on a synthetic dataset
To build some intuition of DMD  modes, Fig. 1 compares results of

modal decomposition by PCA, independence components analysis
(ICA, Hyvärinen and Oja (2000)), and DMD  on a synthetic timeseries
dataset. The timeseries dataset is a movie 10 s in duration sampled
at 50 frames per second, where each frame is a 80 × 80 = 6400 pixel
image (so n = 6400 and m = 500). The dataset is constructed to be
the sum of two generative modes, each with a spatial pattern that
evolves according to some coherent temporal dynamics (Fig. 1a).
Mode 1 is a Gaussian oval in space that oscillates and decays in time;
Mode 2 is a square that oscillates at a lower frequency than the
oval does. The two modes are spatially overlapping. Each mode’s
magnitude is of range [−1, 1], and independent noise drawn from
a Gaussian distribution N(0,  0.75) was added at each pixel.

Fig. 1b–d shows the first two modes computed by each method.
As shown in Fig. 1b, PCA derives modes that mix  the two genera-
tive modes in Fig. 1a. These PCA modes are vectors in Rn, ordered by
their ability to explain the greatest fraction of variance in the data;
PCA assumes the data is distributed as a multi-dimensional Gauss-
ian. Fig. 1c shows that ICA can potentially do better than PCA, but the
two generative modes are still mixed. ICA mode 1 (top of Fig. 1c)
contains the Gaussian oval with a shadow of the square. Unlike
PCA, ICA modes are computed assuming the underlying signals are
non-Gaussian and statistically independent.

In contrast, DMD is an explicitly temporal decomposition
and takes the sequences of snapshots into account, deriving
spatial–temporal coherent patterns in the movie. DMD  modes are
closely related to PCA modes and also assumes variance in the data
is Gaussian. The two largest DMD  modes not only closely resem-
ble the two generative modes, but they also contain an estimate
of the temporal dynamics of the two modes, including an estimate
of their frequencies of oscillation and time constant of exponential
growth/decay. These temporal parameters are computed from the
DMD eigenvalues by Eq. (6) as explained in Section 2.4. Further,
the computational complexity of DMD  is within the same order of
magnitude as that of PCA.

2.1.3. Connections to related methods
DMD  has deep mathematical connections to Koopman spectral

analysis. The Koopman operator is an infinite-dimensional, linear

operator that represents finite-dimensional, nonlinear dynamics.
The eigenvalues and modes of the Koopman operator capture
the evolution of data measuring the nonlinear dynamical system
(Budišić et al., 2012; Mezić, 2005). DMD  is an approximation of
Koopman spectral analysis (Rowley et al., 2009), so that DMD
modes are able to describe even nonlinear systems.

As an algorithm, it is convenient to think of spatial–temporal
decomposition by DMD  as a hybrid of static mode extraction by
principal components analysis (PCA) in the spatial domain and dis-
crete Fourier transform (DFT) in the time domain. In fact, DMD
modes are a rotation of PCA space such that each basis vector has
coherent dynamics. The DMD  algorithm in Section 2.1 starts with
a SVD of the data matrix X = U!V* as the first step, where U are
identical to PCA modes. DMD  modes are eigenvectors of A = U∗AU,
so that we can think of A as the correlation between PCA modes U
and PCA modes in one time step AU. Liked the DFT, DMD  extracts
frequencies of oscillations observed in the measurements. In addi-
tion, DMD  goes beyond DFT to also estimate rates of growth/decay,
where the DFT eigenvalues always have magnitudes of exactly one.

The general formulation of the high-dimensional timeseries
problem is related to several methods in the statistics literature,
including vector autoregression (VAR, Charemza and Deadman
(1992)). DMD  differs from VAR in that the A matrix in Eq. (2) is
never explicitly estimated, but rather we seek its eigendecomposi-
tion by computing A in step 2 of the DMD  algorithm. The resultant
modes are interpreted as a low-rank dynamical system expressed
in Eq. (5). Further, these modes represent separable spatiotemporal
features of the data. Interestingly, this approach of computing A is
mathematically related to Principal Components Regression (PCR,
Jolliffe (2005)).

2.1.4. Additional properties and practical limitations
A few general properties of DMD  are interesting to note. The

data X may  be real or complex valued; in the case of recordings
from electrode arrays, we  will proceed assuming X are real val-
ued measurements of voltage. Further, the decomposition is unique
(Chen et al., 2012), and it is also possible to compute the DMD  of
non-uniformly sampled data (Tu et al., 2013 ).

The relationship of DMD  to PCA and DFT points to a few lim-
itations of the technique that guide its application. DMD  spatial
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Fig. 1. A comparison of DMD  with common modal decomposition algorithms on a synthetic timeseries dataset. (a) The dataset is a movie with 6400 pixels in each frame, and
this  noisy, high-dimensional time series dataset has two  underlying, overlapping patterns, a Gaussian oval and a square. Each mode also has a distinct temporal evolution
that  includes both growth/decay and oscillation. The magnitude of the noise is 0.75× the magnitude of the signals. (b) PCA derives modes that mix  the underlying modes. (c)
ICA  modes more closely resemble the generative modes, but the two  underlying modes are still mixed. (d) DMD extracts the spatial–temporal coherent modes in the movie.
These  DMD  modes closely resemble the underlying spatial modes and provide an estimate of the temporal evolution of these patterns.

2.1.2. DMD, PCA and ICA on a synthetic dataset
To build some intuition of DMD  modes, Fig. 1 compares results of

modal decomposition by PCA, independence components analysis
(ICA, Hyvärinen and Oja (2000)), and DMD  on a synthetic timeseries
dataset. The timeseries dataset is a movie 10 s in duration sampled
at 50 frames per second, where each frame is a 80 × 80 = 6400 pixel
image (so n = 6400 and m = 500). The dataset is constructed to be
the sum of two generative modes, each with a spatial pattern that
evolves according to some coherent temporal dynamics (Fig. 1a).
Mode 1 is a Gaussian oval in space that oscillates and decays in time;
Mode 2 is a square that oscillates at a lower frequency than the
oval does. The two modes are spatially overlapping. Each mode’s
magnitude is of range [−1, 1], and independent noise drawn from
a Gaussian distribution N(0,  0.75) was added at each pixel.

Fig. 1b–d shows the first two modes computed by each method.
As shown in Fig. 1b, PCA derives modes that mix  the two genera-
tive modes in Fig. 1a. These PCA modes are vectors in Rn, ordered by
their ability to explain the greatest fraction of variance in the data;
PCA assumes the data is distributed as a multi-dimensional Gauss-
ian. Fig. 1c shows that ICA can potentially do better than PCA, but the
two generative modes are still mixed. ICA mode 1 (top of Fig. 1c)
contains the Gaussian oval with a shadow of the square. Unlike
PCA, ICA modes are computed assuming the underlying signals are
non-Gaussian and statistically independent.

In contrast, DMD is an explicitly temporal decomposition
and takes the sequences of snapshots into account, deriving
spatial–temporal coherent patterns in the movie. DMD  modes are
closely related to PCA modes and also assumes variance in the data
is Gaussian. The two largest DMD  modes not only closely resem-
ble the two generative modes, but they also contain an estimate
of the temporal dynamics of the two modes, including an estimate
of their frequencies of oscillation and time constant of exponential
growth/decay. These temporal parameters are computed from the
DMD eigenvalues by Eq. (6) as explained in Section 2.4. Further,
the computational complexity of DMD  is within the same order of
magnitude as that of PCA.

2.1.3. Connections to related methods
DMD  has deep mathematical connections to Koopman spectral

analysis. The Koopman operator is an infinite-dimensional, linear

operator that represents finite-dimensional, nonlinear dynamics.
The eigenvalues and modes of the Koopman operator capture
the evolution of data measuring the nonlinear dynamical system
(Budišić et al., 2012; Mezić, 2005). DMD  is an approximation of
Koopman spectral analysis (Rowley et al., 2009), so that DMD
modes are able to describe even nonlinear systems.

As an algorithm, it is convenient to think of spatial–temporal
decomposition by DMD  as a hybrid of static mode extraction by
principal components analysis (PCA) in the spatial domain and dis-
crete Fourier transform (DFT) in the time domain. In fact, DMD
modes are a rotation of PCA space such that each basis vector has
coherent dynamics. The DMD  algorithm in Section 2.1 starts with
a SVD of the data matrix X = U!V* as the first step, where U are
identical to PCA modes. DMD  modes are eigenvectors of A = U∗AU,
so that we can think of A as the correlation between PCA modes U
and PCA modes in one time step AU. Liked the DFT, DMD  extracts
frequencies of oscillations observed in the measurements. In addi-
tion, DMD  goes beyond DFT to also estimate rates of growth/decay,
where the DFT eigenvalues always have magnitudes of exactly one.

The general formulation of the high-dimensional timeseries
problem is related to several methods in the statistics literature,
including vector autoregression (VAR, Charemza and Deadman
(1992)). DMD  differs from VAR in that the A matrix in Eq. (2) is
never explicitly estimated, but rather we seek its eigendecomposi-
tion by computing A in step 2 of the DMD  algorithm. The resultant
modes are interpreted as a low-rank dynamical system expressed
in Eq. (5). Further, these modes represent separable spatiotemporal
features of the data. Interestingly, this approach of computing A is
mathematically related to Principal Components Regression (PCR,
Jolliffe (2005)).

2.1.4. Additional properties and practical limitations
A few general properties of DMD  are interesting to note. The

data X may  be real or complex valued; in the case of recordings
from electrode arrays, we will proceed assuming X are real val-
ued measurements of voltage. Further, the decomposition is unique
(Chen et al., 2012), and it is also possible to compute the DMD  of
non-uniformly sampled data (Tu et al., 2013 ).

The relationship of DMD  to PCA and DFT points to a few lim-
itations of the technique that guide its application. DMD  spatial
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