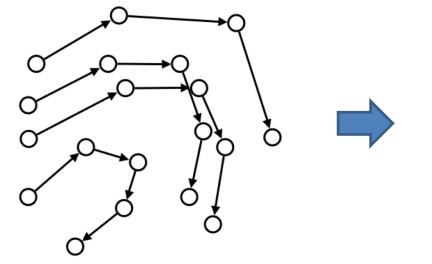
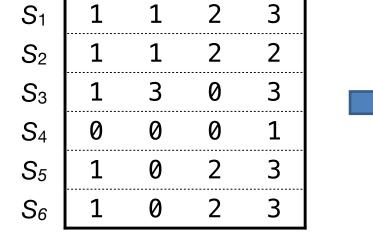
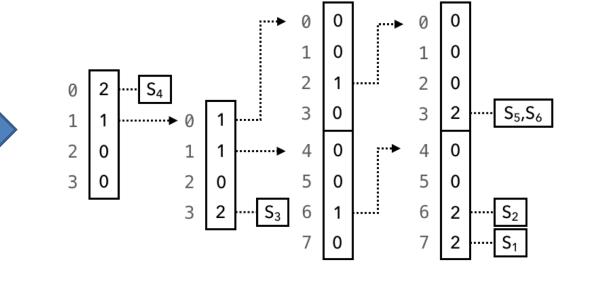

田部井 靖生 圧縮情報処理ユニット **Succinct Information Processing Unit** Yasuo Tabei RIKEN

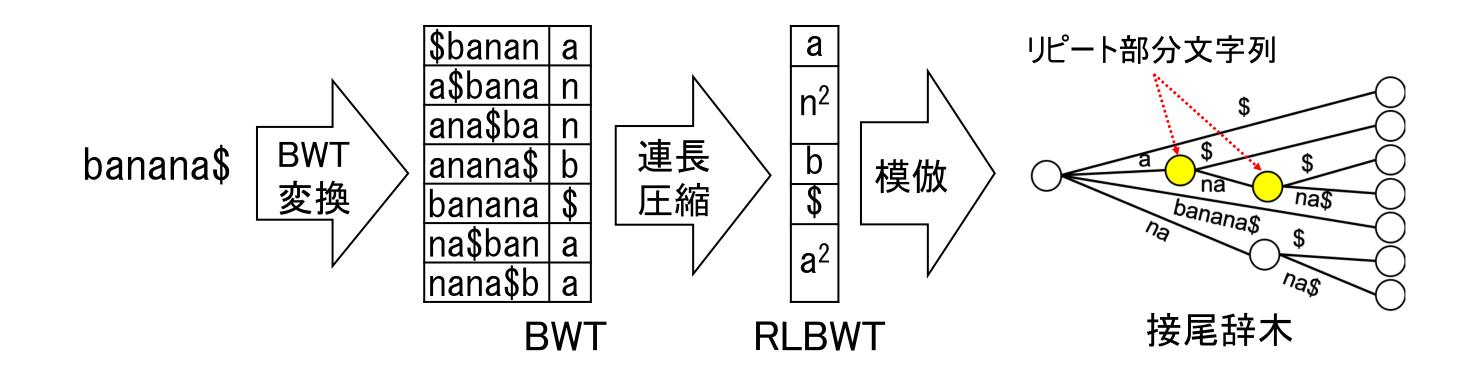

背景:データ圧縮は情報化社会において必須技術 現在主流の可逆圧縮アルゴリズムはLZ77圧縮に基づく 問題点:RLBWTを用いたLZ77圧縮(Policriti and Prezza,'18)


- BWT変換された文字列を連長圧縮(RLBWT)したサイズrに対して $O(r \log n)$ の使用メモリー(nは入力文字列長)
- 入力文字列がRLBWTによって小さくなるとき, r << n で省領域
- 一方、LZ77フレーズを動的木で探しているので圧縮にO(n log r)時間 提案:動的木を使わずに静的なデータ構造のみで


	メモリ使用量(MB)				
-		Review	СР	SIFT	GIST
提案	SI-bST	48	1,057	9,802	1,338
	MI-bST $(m=2)$	126	3,232	23,159	5,513
	SIH	172	2,329	32,727	4,501
	MIH $(m=2)$	125	4,633	28,876	6,128
	MIH $(m=3)$	160	3,997	26,665	5,744
	HmSearch ($\tau = 1, 2$)	866	53,097	_	48,456
	HmSearch ($\tau = 3, 4$)	860	29,396	_	27,337
	HmSearch ($\tau = 5$)	860	28,866	_	25,305

tSTAT: 効率的な軌跡類似検索

問題: Fréchet空間上での軌跡類似検索 提案:LSH+マルチインデックス+簡潔トライによる高速かつ省メモリな検索法

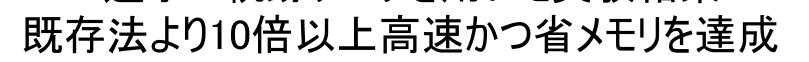


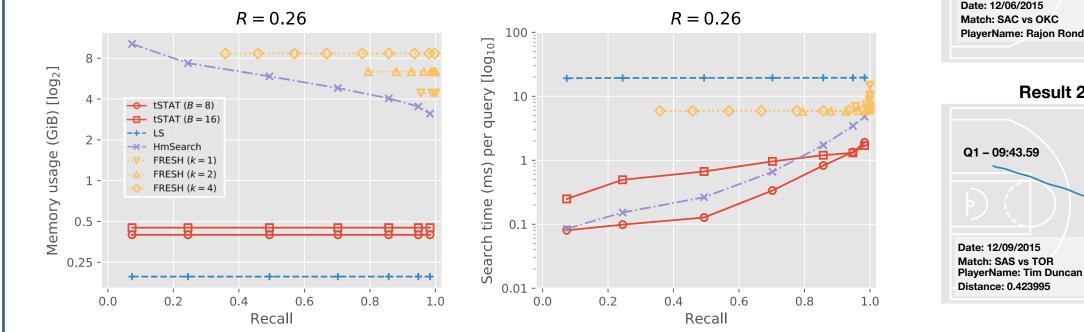
NBA選手の軌跡データを用いた実験結果:

LZ77フレーズを高速に探す新しいアルゴリズムを提案 結果:使用メモリーを増やすことなく圧縮時間を $O(n \min \{\log \log n, \sqrt{\log r} / \log \log r\})$ に改善

RLBWT上でのリピート部分文字列発見

背景:文字列上でのリピート部分文字列の発見は


ゲノム配列のモチーフ抽出や文字列上での特徴量抽出として重要 問題点:既存手法の接尾辞木を用いた手法(Okanohara and Tsujii,'09)


 ・文字列長nに対して線形時間で発見

一方、O(n log n)の使用メモリー

手法:BWT変換された文字列を連長圧縮(RLBWT)し

接尾辞木を模倣する新しいデータ構造を提案 結果:RLBWTのサイズrに対してO(r log n)の使用メモリーで

Q4 - 07:00.29 Q3-00:31.75 Q4-07:09.7 Q3 - 00:36.1 Q4 - 06:17.35 Q1 - 09:48.3 Q4 - 06:20.5 ayerName: P. J. Tucker (No

文字列アライメントカーネルのための特徴マップ [ICDM'19]

- •背景:文字列アライメントカーネルは、文字列データ分類、配列相同性が低いDNA/Proteinの分類 において有用 [BMCBioinfo.'06]
- ・問題点:カーネル法は文字列の長さに対して2乗の計算時間とデータ数の2乗のメモリーが必要
- 手法: Edit-sensitive parsing (ESP)と特徴マップ[Neurips'07]に基づく新しい特徴マップを提案

 特徴マップに必要なメモリーをO(d×D)からO(d)に削減する手法も提案(d:入力次元、D:出力次元) •結果:大規模テキストの分類が可能になった


(i)	ESP (ii	i) FMs (iii) Learn li	near model
$S_1 = ABRACADA$	$x_1 = (3, 1, 3)$	$z_1 = (1.2, 0.1, 1, 2)$	
$S_2 = ABRA$	$x_2 = (2, 4, 1)$	$z_2 = (2, 1, 1.2, 3.4)$	
$S_3 = ABRACA$	x ₃ = (5, 1, 2)	z ₃ = (-1.2,0,2.2,3)	$F(z_i) = wz_i$
$S_4 = ATGCAGA$	$x_4 = (1, 0, 0)$	z ₄ = (-3.2,0,2.2,1)	
$S_5 = BARACR$	x ₅ = (2, 2, 1)	z ₅ = (2, 2, -1.2, 0)	

リピート発見 (r << nが成り立つとき省領域)

Edit-sensitive paring (ESP) [G.Cormode and S.Muthukrishnan, 2007]

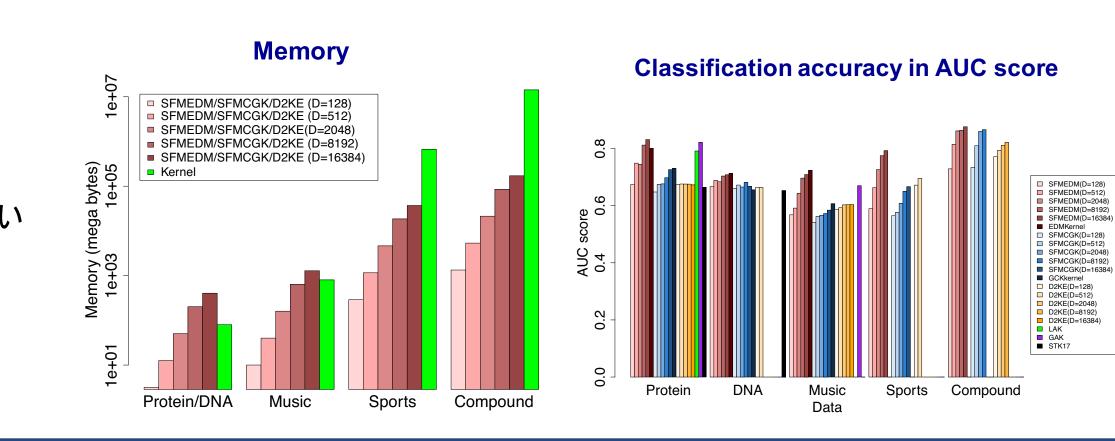
• 概要:文字列Sから構文木を構築するアルゴリズム • 特徴:同じノードは同じノードラベルを持つ子ノードを持つ • 文字列Sを整数値特徴ベクトルxを作るのに使うことができる • xのそれぞれの要素は対応するノードラベルの出現回数 メリット:2つの文字列感の編集距離を特徴ベクトル間 の編集距離で近似することができる

(i.e., EDM(S_i, S_j) $= ||x_i - x_j||_1$) 計算時間は文字列の長さに線形時間

 $K(S_i, S_j) = \exp(-EDM(S_i, S_j)/\beta)$ $= \exp(-||\mathbf{x}_i - \mathbf{x}_j||_1 / \beta)) \triangleleft (EDM(S_i, S_j) = ||\mathbf{x}_i - \mathbf{x}_j||_1)$ = $\int_{\mathbb{R}^d} p(\omega) \exp(i(x_i - x_j)\omega) d\omega \triangleleft$ Bochner's theorem $= E_{\omega,p} \left[z_{\omega}(x_i) z_{\omega}(x_j) \right] \quad (z_{\omega}(x) = \sqrt{2} \cos(x^T \omega))$ $= z(x_i)' z(x_j) \ (z(x) = \sqrt{\frac{1}{d}} (\cos(x^T \omega_1), ..., \cos(x^T \omega_D)))$ ω_i: コーシー分布からサンプリングされる乱数 • O(dD) (d: 入力次元, D:出力次元)メモリーが必要で空間効率が悪い - Fast food approach [ICML'13]は、RBFカーネルに対する 特徴マップを近似するために利用可能 ・O(d)メモリーのみ必要な特徴マップを開発した

Experiments

Dataset	Number	#positives	Alphabet size	Average length
Protein	3,238	96	20	607
DNA	3,238	96	4	1,827
Music	10,261	9,022	61	329
Sports	296,337	253,017	63	307
Compound	1,367,074	57,536	44	53


5 massive string datasets in real world

Competitors

> 5 SVMs with string kernels: LAK [Bioinfo'08], GAK [ICML'11], ESP+Kernel, CGK+Kernel, stk17 [NIPS'17]

FMs for alignment kernels: D2KE [KDD'19]

SFMEDM: proposed

Training time in second

Method	Protein	DNA	Music	Sports	Compound
SFMEDM(D=128)	5	8	11	204	261
SFMEDM(D=512)	22	34	47	799	1,022
SFMEDM(D=2048)	93	138	193	3,149	4,101
SFMEDM(D=8192)	367	544	729	12,179	16,425
SFMEDM(D=16384)	725	1,081	1,430	24,282	32,651
SFMCGK(D=128)	14	52	26	452	397
SFMCGK(D=512)	60	222	104	1,747	1,570
SFMCGK(D=2048)	237	981	415	7,156	6,252
SFMCGK(D=8192)	969	3,693	1,688	27,790	25,054
SFMCGK(D=16384)	1,937	7,596	3,366	53,482	49,060
D2KE(D=128)	319	4,536	296	8,139	1,641
D2KE(D=512)	1,250	19,359	1244	34,827	6,869
D2KE(D=2048)	5,213	76,937	5,018	140,187	28,116
D2KE(D=8192)	21,208	>48h	19,716	>48h	>48h
D2KE(D=16384)	43,417	>48h	38,799	>48h	>48h
LAK	31,718	-	-	-	-
GAK	25,252	>48h	101,079	>48h	>48h
EDMKernel	20	28	162	>48h	>48h
STK17	3218	917	>48h	>48h	>48h