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利点 : 計算リソースでの大規模データ解析が可能

巨大なデータ
圧縮データ

データ解析技術
・ 類似度検索
・ 線形モデルの学習
・ カーネル法
・ 文字列処理
etc
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S1 = ABRACADA
S2 = ABRA
S3 = ABRACA
S4 = ATGCAGA
S5 = BARACR

x1 = (3, 1, 3)
x2 = (2, 4, 1)
x3 = (5, 1, 2)
x4 = (1, 0, 0)
x5 = (2, 2, 1)

z1 = (1.2,0.1,1,2)
z2 = (2,1,1.2,3.4)
z3 = (-1.2,0,2.2,3)
z4 = (-3.2,0,2.2,1)
z5 = (2, 2, -1.2, 0)

F(zi)=wzi

(i) ESP (ii) FMs (iii) Learn linear model

• rI : vV�#9$7</%�1;��vV�.�+u��s�cn`	k�DNA/Protein�u�
����|} [BMCBioinfo.’06]
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• Zx : Edit-sensitive parsing (ESP)�oi5,3[Neurips’07]�E��^��oi5,3"l=
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x = (4, 5, 2, 1, 1, 1, 1, 1)

Edit-sensitive paring (ESP) 
[G.Cormode and S.Muthukrishnan, 2007]
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(i.e.,	EDM(Si,Sj)≒||xi-xj||1)
• k^A|Ã="�Â{µÁc,A|

特徴マップ
K(Si,Sj)	=	exp(-EDM(Si,Sj)/β)		

≒ exp(-||xi-xj||1/β))		◁ (EDM(Si,Sj)≒||xi-xj||1)

= ∫89 : ω exp < => − =@ ω Aω◁ Bochner’s theorem

=	LM,N OM => OM =@ (OM = = 2 cos(=Qω))

=O => ′O(=@) (z(x)	=
T
U
(cos(=QωT),…,cos(=QωW)))
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ò O(dD) (d: 
�K�, D:��K�)ëìîó°.g¾[|�Q°0­
- Fast food approach [ICML’13]��RBF
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Training time in second  
TABLE VI

EXECUTION TIME IN SECONDS FOR BUILDING FEATURE VECTORS AND COMPUTING KERNEL MATRICES IN ADDITION TO TRAINING LINEAR/NON-LINEAR

SVM FOR EACH METHOD.

Method Protein DNA Music Sports Compound

SFMEDM(D=128) 5 8 11 204 261
SFMEDM(D=512) 22 34 47 799 1,022
SFMEDM(D=2048) 93 138 193 3,149 4,101
SFMEDM(D=8192) 367 544 729 12,179 16,425
SFMEDM(D=16384) 725 1,081 1,430 24,282 32,651

SFMCGK(D=128) 14 52 26 452 397
SFMCGK(D=512) 60 222 104 1,747 1,570
SFMCGK(D=2048) 237 981 415 7,156 6,252
SFMCGK(D=8192) 969 3,693 1,688 27,790 25,054
SFMCGK(D=16384) 1,937 7,596 3,366 53,482 49,060

D2KE(D=128) 319 4,536 296 8,139 1,641
D2KE(D=512) 1,250 19,359 1244 34,827 6,869
D2KE(D=2048) 5,213 76,937 5,018 140,187 28,116
D2KE(D=8192) 21,208 >48h 19,716 >48h >48h
D2KE(D=16384) 43,417 >48h 38,799 >48h >48h

LAK 31,718 - - - -
GAK 25,252 >48h 101,079 >48h >48h
EDMKernel 20 28 162 >48h >48h
STK17 3218 917 >48h >48h >48h

Protein/DNA Music Sports Compound
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Fig. 4. Memory in mega bytes for training SVM
for each method. ”Kernel” represents GAK,
LAK, EDMKernel, CGKKernel and STK17. Protein DNA Music Sports Compound
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Fig. 5. AUC score for each method.

large dimensions (e.g., D = 8, 192 and D = 16, 384) were
used, which showed that creating high dimension vectors for
achieving high classification accuracies by D2KE is time-
consuming. The executions of SFMEDM and SFMCGK fin-
ished with 48 hours for all datasets. SFMEDM and SFMCGK
took around nine hours and 13 hours, respectively, for ”Com-
pound” consisting of 1.3-million strings in the setting of large
D = 16, 382. .

Figure 4 shows amounts of memory consumed for training
linear/non-linear SVM for each method, where Here, GAK,
LAK, EDMKernel, CGKKernel and STK17 are represented
as ”Kernel”. ”Kernel” required a small amount of memory for
the small datasets (namely, ”Protein”, ”DNA” and ”Music”),
but it required a huge amount of memory for the large
datasets (namely, ”Sports” and ”Compound”). For example,
it consumed 654 GB and 1.3 TB of memory for ”Sports”
and ”Compound”, respectively. The memories for SFMEDM,
SFMCGK and D2KE were at least one order of magnitude

smaller than those for ”Kernel”. SFMEDM, SFMCGK and
D2KE required 36GB and 166GB of memory for ”Sports”
and ”Compound” in the case of large D = 16, 382, respec-
tively. These results demonstrated the high memory efficiency
of SFMEDM and SFMCGK. Although training linear SVM
with vectors built by K2DE was space-efficient, prediction
accuracies were not high, which is presented next.

Figure 5 shows the classification accuracy of each method,
where the results for the methods not finished with 48 hours
were not plotted. The prediction accuracies of SFMEDM
and SFMCGK were improved for larger D. The prediction
accuracy of SFMEDM was higher than that of SFMCGK
for any D on all datasets and was also higher than those of
all the kernel methods (namely, LAK, GAK, ESPKernel and
CGKKernel and STK17). The prediction accuracies of K2DE
were worse than those of SFMEDM and were not improved
for even large D. These results suggest that SFMEDM can
achieve the highest classification accuracy and it is much more

Memory
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��O :RLBWTÐS­¹LZ77�d (Policriti and Prezza,’18)
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��Oø@#3LÂ7(oDÐS­¹3L(Okanohara and Tsujii,’09)
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Date: 12/06/2015 
Match: SAC vs OKC 
PlayerName: Rajon Rondo (No 9)

Q4 – 07:09.74

Q4 – 07:00.29

Date: 10/31/2015 
Match: NOP vs GSW 
PlayerName: Toney Douglas (No 16) 
Distance: 0.363737

Date: 12/09/2015 
Match: SAS vs TOR 
PlayerName: Tim Duncan (No 21) 
Distance: 0.423995

Query Result 1 Result 2

Q3 – 00:36.15

Q3 – 00:31.75

Q1 – 09:48.32

Q1 – 09:43.59

Date: 12/06/2015 
Match: SAC vs OKC 
PlayerName: Rajon Rondo (No 9)

Q4 – 07:09.74

Q4 – 07:00.29

Date: 10/31/2015 
Match: NOP vs GSW 
PlayerName: Toney Douglas (No 16) 
Distance: 0.363737

Date: 12/09/2015 
Match: SAS vs TOR 
PlayerName: Tim Duncan (No 21) 
Distance: 0.423995

Query Result 1

Result 2

Q3 – 00:36.15

Q3 – 00:31.75

Q1 – 09:48.32

Q1 – 09:43.59

Date: 01/12/2016 
Match: PHX vs IND 
PlayerName: P. J. Tucker (No 17) 
Distance: 0.395999

Result 3

Q4 – 06:20.51

Q4 – 06:17.35
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S1 1 1 2 3
S2 1 1 2 2
S3 1 3 0 3
S4 0 0 0 1
S5 1 0 2 3
S6 1 0 2 3

Experiments

• 5 massive string datasets in real world
• Competitors
Ø 5 SVMs with string kernels: LAK [Bioinfo’08], GAK 

[ICML’11], ESP+Kernel, CGK+Kernel, stk17 [NIPS’17]
Ø FMs for alignment kernels: D2KE [KDD’19]
Ø SFMEDM: proposed 

Algorithm 1 Generation of Cauchy random numbers using
point-wise independent hash function. array1, array2: arrays
of d 64-bit unsigned integers; UMAX32: maximum value of
unsigned 32-bit integer; β: a parameter.

1: Initialize array1 and array2 with 64-bit random numbers
as unsigned integers.

2: function FUNC F(i, j)
3: f = array1[j] + array2[j] · i ◃ Compute hash value
4: v = f >> 32 ◃ Get the most-significant 32-bit of

value
5: return v/UMAX32 ◃ Return value in [0, 1]

6: function FUNC H(i, j)
7: u = Func F (i, j)
8: return tan(π · (u− 0.5))/β ◃ Convert random

number u to Cauchy random number

Algorithm 2 Function SFM. z: vector of RFFs; D: dimension
of z; V : characteristic vector; d: dimension of V .

1: function SFM(V )
2: for i = 1, ..., D/2 do
3: s = 0
4: for j = 1, ..., d do
5: s = s+ V [j] · Func H(i, j)

6: (z[2 · i− 1], z[2 · i]) =
√

2/D(cos(s), sin(s))

7: return z

where β is a parameter. We apply ESP to Si for each i =
1, 2, ..., N for building characteristic vector V (Si). ESP ap-
proximates EDM(Si, SJ ) as an L1 distance distance between
characteristic vectors V (Si) and V (Sj), i.e., EDM(Si, Sj) ≈
||V (Si)−V (Sj)||1. k(Si, Sj) can be approximated as follows,

k(Si, Sj) ≈ exp(−||V (Si)− V (Sj)||1/β). (8)

Since Eq.8 is a Laplacian kernel, which is also known as a
shift-invariant kernel [21], we can approximate k(Si, Sj) using
FMs z(x) for RFFs as follows,

k(Si, Sj) ≈ z(V (Si))
′z(V (Sj)), (9)

where z(x) =
√

2/D(zr1(x), zr2(x), ..., zrD/2
(x)). For

Laplacian kernels, zrm(x) for each m = 1, 2, ..., D/2 is
defined as

zrm(x) = (cos (r⊤mx), sin (r⊤mx)), (10)

where random vectors rm ∈ Rd for m = 1, 2, ..., D/2
are sampled from the Cauchy distribution. We shall refer to
approximations of alignment kernels leveraging ESP and FMs
as FMEDM.

Applying FMs to high dimensional characteristic vectors
consumes O(dD) memory for storing vectors rm ∈ Rd for
m = 1, 2, ..., D/2. Thus, we present SFMs for RFFs using
only O(td) memory by applying t-wise independent hash
functions introduced in Sec. IV. We fix t = 2 in this study,
resulted in O(d) memory. We shall refer to approximations of
alignment kernels leveraging ESP and SFMs as SFMEDM.

TABLE II
SUMMARY OF DATASETS.

Dataset Number #positives Alphabet size Average length
Protein 3,238 96 20 607
DNA 3,238 96 4 1,827
Music 10,261 9,022 61 329
Sports 296,337 253,017 63 307
Compound 1,367,074 57,536 44 53

Algorithm 1 generates random numbers from a Cauchy
distribution by using O(d) memory. Two arrays array1 and
array2, initialized with 64-bit random numbers as unsigned
integers, are used. Function fa(x) is implemented using
array1 and array2 in Func F and returns a random number
in [0, 1] for given i and j as input. Then, random number u
returned from Func F is converted to a random number from
the Cauchy distribution in Func H as tan(π · (u − 0.5))/β
at line 8. Algorithm 2 implements SFMs generating RFFs in
Eq.10. Computation time and memory for SFMs are O(dDN)
and O(d), respectively.

VI. EXPERIMENTS

We evaluated the performance of SFMEDM with five mas-
sive string datasets, as shown in Table II. The datasets are
detailed in [25]. All the methods were implemented by C++,
and all the experiments were performed on one core of a
quad-core Intel Xeon CPU E5-2680 (2.8GHz). The execution
of each method was stopped if it did not finish within 48
hours in the experiments. Software and datasets used in this
experiments are downloadable from https://sites.google.com/
view/alignmentkernels/home.

A. Scalability of ESP

The evaluations of the scalability of ESP and CGK are pre-
sented in the full version [25]. For each dataset, characteristic
vectors of very high dimensions were built by ESP and CGK.
For example, 18 million dimension vectors were built by ESP
for the ”Sports” dataset. Applying the original FMs for RFFs
to such high dimension characteristic vectors consumed huge
amount of memory, deteriorating the scalability of FMs. The
proposed SFMs can solve the scalability problem, which will
be shown in the next subsection.

B. Efficiency of SFMs

We evaluated the efficiency of SFMs applied to character-
istic vectors built from ESP, and we compared SFMs with
FMs. We examined combinations of characteristic vectors
and projected vectors of SFMEDM, FMEDM, SFMCGK and
FMCGK. The dimension D of projected vectors of RFFs was
examined for D = {128, 512, 2048, 8192, 16384}.

Figure 2 shows the amount of memory consumed in SFMs
and FMs for characteristic vectors built by ESP and CGK for
each dataset. According to the figure, a huge amount of mem-
ory was consumed by FMs for high dimension characteristic
vectors and projected vectors. Around 1.1TB and 323GB of
memory were consumed by FMEDM for D = 16, 384 for
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