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Research Outline

d Background: Modern ML requires a huge amount of data and large model sizes, which Is - D
Deep Networks
also vulnerable to adversarial attacks and lack of interpretability. o >
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representation, tensor decomposition/networks with aim to address the challenges of data 5 © —
Z Data efficiency Y [
efficiency, model expressiveness with efficient parameters, robustness to adversarial " =
attacks, and interpretability.
Learning with Incomplete or Limited data Expressiveness with Tensor Networks
[ Learning representation and classification model from incomplete data (J RNN and LSTM do not have long memory from a
(Caiafa et al., CVPR workshop 2021) N statistical perspective [Zhao et al., ICML 2020] . I .
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Approach: Simultaneous reconstruction (sparse coding) and h(t) = G x4 h(t-1) | X2 Xp [ em1y | = G- h(t-1)
classification (DNNs) with sufficient condition . - P
p-fold tensor product with itself
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[ Latent factor analysis with limited data samples (Taoetal., ACML 2021)
g™ =Wn®™ 4™ yp=1. . N 1 Given tensorial time series with irregular time steps, how to achieve

prediction on continuous time points with efficient parameters?

» Given higher-order data ¥ <R 'marginalize # gives Y ~N(0.V)
Tensor Neural ODE (Bai et al., IJICNN 2021)

» TN representation of parameter W dy(t
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= Symmetric tensor ring reparameterization
= Capture structural dependency within data TENODE: architecture with tensor contraction layer
Tensor Network Topology Learning
. Fully Connected TN (FCTN) for tensor completion . Problem: The existing TN structures are NOT the optimal, and the searching task is NP-hard.
(Zheng et al., AAAI 2021) Filfieney Wihsie
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. . . known structures More efficient :
= Fully capture correlations between pairwise modes structures (Li et al., ICML 2020)
= Transpositional Invariance Learn (near-)optimal TN topology via evolutionary algorithm (EA).
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