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Main Research Directions

1) Mathematical theory and structures coming from/related to Infinite-dimensional Information Geometry and Optimal
Transport, in particular in the setting of reproducing kernel Hilbert spaces (RKHS), infinite-dimensional Gaussian
measures, and Gaussian processes.

2) Theory of RKHS and related methodologies in machine learning and statistics

3) Novel algorithms and applications in functional data analysis, computer vision, signal processing, brain imaging, and
brain computer interfaces.

Current research focus: Optimal Transport in Statistics and Machine Learning Gaussian process setting

® Our current focus is on Optimal Transport in the infinite-dimensional setting, in particular in Let 7" = compact metric space (in general

the reproducing kernel Hilbert space (RKHS) and stochastic process settings o-compact metric space), ¥ = nondegenerate
Borel probability measure on 7". Consider the
Gaussian process £ = (£)ier = (£(w,1))ter ON
a probability space (€2, F, P) with mean func-
tion m(t) = IE&(t) and covariance function

® QOur recent results show analytically that the entropic regularization formulation possess
many favorable theoretical properties over the exact optimal transport formulation, such as
dimension-independent convergence for empirical estimations.

® In the setting of Gaussian measures on Hilbert space and Gaussian processes, many quantities K(s,t) = E[({(s) —m(s))(§(t) —m(t))]. Assume

2
of interest admit explicit formulas. that fT m*(t)dv(t) < oo, [, K(t, t)dv(t) < oo.
There is a one-to-one correspondence between

Gaussian process GP(m, K) <= N(m,Ck)
(Gaussian measure) on H = L£*(T,v), with co-
variance operator

Optimal Transport and Entropic Regularization

Optimal Transport distances between probability measures

e (X,d) = complete separable metric space, ¢ : X x X — R>y = lower semi-continuous cost (Ck f)(s) = / K (s,t)f(t)dv(t)
function (e.g. X = R"™, ¢(z,y) = ||z — y||?, P(X) = set of all probability measures on X. T

Distances/divergences between Gaussian

e The optimal transport (OT) problem between two probability measures 1y, 1 € P(X) is _ |
processes ' = GP(m,;, K"),1=1,2

OT. (g, 11) = min - lc| = min clx,y)dvy(x L1¢2y

) = ettt T esotmitvonn) Jxx TN Y Dap(£'1/62) = DN (m1, Crcs) [ (mz, Cca))

Entropic regularization of optimal transport o | r% VAN
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e Exact optimal transport distances are generally computationally demanding t\‘ w “t”' [
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e Exact Wasserstein distance W, (vg,v1) = OTgr (10, v1)'/P can have high sample complexity, o My ' (W
with worst case being exponential O(»~*/¢) in®¢ (¢

e Entropic regularization problem can be solved efficiently using Sinkhorn algorithm Samples of the centered Gaussian processes
. | ) GP(0,K'), GP(0,K?) on T' = [0,1]. Left:
OTlV) = ity Bl RLGNR @V} e >0 K'(z,y) = exp(—allz — yll), a = 1. Right
K2($ y) = exp(—|lz — y[|*/o?), 0 = 0.1
e Sinkhorn divergence S¢(u,v) = OTg, (1, v) — 5[OT g (1, 1) + OT g (v, v)], with S (g, ) = 0 wammmﬁ_ ﬁﬁ#_ﬁ_@w#w“

LU ]

Entropic regularization of 2-Wasserstein distance - a sample of recent results e

Theorem 1 (Sinkhorn divergence between Gaussian measures on Hilbert space). Let X = H -
separable Hilbert space, c(x,vy) = ||z — y||?. Let po = N (mo, Co),p11 = N (my,C1). For each fixed e > 0, |

Approximate squared distances/divergences

qe 2 € TN Te o NE o M € | i det (I + %MSI)Z | between the above centered Gaussian processes
2(1“’03 1“’1) _ ||m{] — mlll -+ 1 I'[ 00 01 T 11] -+ 1 0g det (I I %A{SU) det (I 1 %ﬂ*ffl) on 77 = [0, l]d from finite covariance matri-

- - ces, with mm = 10,20,...,1000. Left: d = 1,

/2 1/2 right: d = 5. The convergence of the empir-

Here M;; = —1 + (I + 2C,/7C,;C; ) is a trace class operator, det is the Fredholm determinant, and ical entropic regularized Sinkhorn divergence
61_1:% S5 (ko 1) = W3 (po, 1) = [lmo — mal]? + tr[Co + C1 — 2(03’20103”2)”2], }EEG SE (1o, pu1) = towards the theoretical value is dimension-

independent, in contrast to that of the exact 2-
Wasserstein distance.

I — my ||? (S§ provides an explicit interpolation between 2-Wasserstein distance and MMD)

Theorem 2 (Dimension-independent Estimation of Sinkhorn divergence between Gaussian pro-
cesses from finite covariance matrices - bounded kernels). Assume sup, ., K*(z,z) < k7 Let
= (x;)™, be independently sampled from (T, v). For any 0 < 6 < 1, with probability at least 1 — 9,
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