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Goal: Al that can continue to learn and improve throughout their lives, just like humans and animals. Currently, deep
learning (DL) requires a large amount of data which is costly and rigid (cannot quickly adapt). We aim to fix these issues

Overview and Goals

with a new learning paradigm based on Bayesian principles.

Summary of our research in the years 2020-2021.:

New theoretical results for online Bayes
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Proposed Bayesian learning rule (BLR) yielding a wide-range of algorithms.
New BLR variants for DL, one of which won the NeurlPS-2021 Approximate Inference challenge.
Progress on adaptation and continual learning (FROMP, K-priors, Bayes-duality).

Hyperparameter and architecture search using Bayesian methods.
A new paper on Al for social good in Nature communications.

Standard Deep Learning
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Bayesian Learning Rule (BLR)

Problem: Is there a common principle behind
“successful” algorithms (e.g., those in DL)?

n}gin 6(6’) VS 1(;%15 Lq(0) [5(9)] — H(q) Entropy

" Generalized-Posterior approx.

Solution: we propose the Bayesian Learning Rule [1]
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By choosing different approximations, we can
derive a wide-variety of learning-algorithms. Better
approximations lead to better algorithms.

Learning Algorithm Posterior Approx. Natural-Gradient Approx. Sec.

Optimization Algorithms
Gradient Descent Gaussian (fixed cov.) Delta method 1.3
Newton’s method Gaussian — 1.3

Multimodal optimization (vew) Mixture of Gaussians — 3.2

Deep-Learning Algorithms

Stochastic Gradient Descent Gaussian (fixed cov.) Delta method, stochastic approx. 4.1

RMSprop/Adam Gaussian (diagonal cov.) Delta method, stochastic approx., 4.2
Hessian approx., square-root scal-
ing, slow-moving scale vectors
Dropout Mixture of Gaussians Delta method, stochastic approx., 4.3
responsibility approx.
STE Bernoulli Delta method, stochastic approx. 4.5
Online Gauss-Newton (OGN) Gaussian (diagonal cov.) Gauss-Newton Hessian approx. in 4.4
(New) Adam & no square-root scaling
Variational OGN (xew) — Remove delta method from OGN 4.4
BayesBiNN (vew) Bernoulli Remove delta method from STE 4.5
Approximate Bayesian Inference Algorithms
Conjugate Bayes Exp-family Set learning rate py = 1 5.1
Laplace’s method Gaussian Delta method 4.4
Expectation-Maximization Exp-Family + Gaussian  Delta method for the parameters 5.2
Stochastic VI (SVI) Exp-family (mean-field)  Stochastic approx., local p, = 1 5.3
VMP — pt = 1 for all nodes 5.3
Non-Conjugate VMP — — 5.3
Non-Conjugate VI (new) Mixture of Exp-family None 5.4

1. Khan and Rue, The Bayesian Learning Rule, arXiv, 2021
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Problem: Theoretical analysis for online Bayesian
learning hold under restrictive conditions.

Solution: We propose to relax these conditions, by
using a generalize online Bayesian methods where
arbitrary divergences can be used (instead of KL) [8]
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We derive an explicit formula for the updates
which we call generalized Bayes rule.

p'(d0) = Vo™ [ A — 1 Z (s(0) | w(do)
We prove a regret bound that holds for below the

usual bounded setting (less restrictive).

8. Alquier, Non-exponentially Weighted Aggregation: Regret
Bounds for Unbounded Loss Functions, ICML 2021

1st Place in NeurIlPS 2021 Challenge

Problem: Approximate the expensive, exact Bayesian
posterior (computed over several weeks on 512 TPUs)
but don’t exceed ~10x the cost of standard training.

Solution: A BLR variant, called iVON [2], uses mixture-
of-Gaussian posterior approximation. Won first prize!
Team consisted of Thomas Mdéllenhoff, Yuesong Shen,
Gian Maria Marconi, Peter Nickl, Emtiyaz Khan.

VOGN iIVON'
g V(B), where 0 ~ N(m, (s+7)7") g+ VE0O), where § ~ N(m, ™)
— [s(@—m)lg+~v—s

s+ (1— )s—l—pZigf m(—m—as_lg
m <+ m—a(s+7v) g s s+ (1—p)gs+0.5(1 — p)*s g

Team Rank | Rank CIFAR | CIFAR | Med- Med- UCI-
(Light | (Ext. Agree | TVD MNIST MNIST | Gap
Track) Track) Agree TVD W2

% RIKEN Bayesian 1.67 0.787 0.197 0.884 0.0994 -0.094

Team ABI Learning Rule

Ecole MultiSWAG 2.5 2.5 0.777 0.218 0.8905 0.0983 -0.166

Polytechnique

University  Seq Anchored 2.5 3 0.773 0.210 0.8745 0.1066 -0.115

of Liege Ensembles

More BLR variants:

o IVON [2] is proposed to ensure the steps of BLR
always lead to positive covariances.

o New generalizations in [3] for “structured”
covariances allow low-rank and sparse structures (eg,
recovering LBFGS/DFP style updates). This work uses
Lie-Group structures.

o BayesBiNN [4] is a BLR variant for Binary Neural
Networks which recovers the STE algorithm

2. Lin, Schmidt, Khan, Handling the Positive-Definite Constraint
in the Batesian Learning Rule, ICML 2020

3. Lin, Nielsen, Khan, Schmidt, Tractable structured natural-
gradient descent using local parameterizations, ICML 2021

4. Meng, Bachman, Khan, Training Binary Neural Networks
using the Bayesian Learning Rule, ICML 2020

Architecture Selection for Deep Networks

Problem: Existing methods require validation data to
select architecture and hyperparameters.

Solution: A method based on marginal likelihood using
only training data. Uses Laplace approximation[9.10] with
scalable Hessian approx (eg, KFAC).
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Training data fit ~ g
complexity penalty

Larger models, which give better test error, also

generally have higher marginal likelihoods.
CIFAR-100
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9. Immer, Bauer, Fortuin, Ratsch, Khan, Scalable marginal
likelihood for model selection in deep learning, ICML 2021

10. Immer, Korpeza, Bauer, Improving predictions of Bayesian
neural networks via local linearization, Aistats 2021

Continual Learning and Adaptation

Problem: Reduce catastrophic forgetting of the past. A
popular method is to use quadratic weight regularizers.

Q’ne'w(g) = min i‘q(Q) [Ene'w (9)] o H(Q) o
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Solution: We show that functional

regularization of “memorable past”

(FROMP) [5] gives better results

Kernels weighs examples /
according to their memorability
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Forces network-outputs

to be similar

1. Turn neural networks into Gaussian process using Bayes Memorable examples of a CNN on MNIST
Most memorable Least memorable
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In [6], we quantify “forgetting” in terms of past memory
represented via principal components analysis.

In [7], we present a generalization called K-priors to
unify such adaptation methods. We show that these
methods faithfully reconstruct the gradient of the past.

Weight-space

Function-space

K(0) = 7Dg(0]|0o1a) +
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Pan, Swaroop, Immer, Eschenhagen, Turner, Khan, Continual

Deep Learning by Functional Regularisation of Memorable

Past, NeurlPS 2020

Doan, Abbana Bennani, Mazoure, Rabusseau, Alquier, A

Theoretical Analysis of Catastrophic Forgetting through the

NTK Overlap Matrix, AlStats 2021

Khan & Swaroop, Knowledge-Adaptation Priors, NeurlPS 2021

A Summary of Other Works

Gaussian Process: Using BLR, we derive a fast

algorithm for state-space GP [11]. We also show that a
dual parameterization useful for sparse GPs [12]. We
derive a sparse representation using subset of data [13]

11. Chang, Adam, Khan, Solin, Dual Parameterization of Sparse

Variational Gaussian Processes, ICM

L 2021

12. Chang, Wilkinson, Khan, Solin, Fast Variational Learning in

State-Space Gaussian Process Models, MLSP, 2020

13. Jain, PK, Khan, Subset-of-Data Variational Inference for Deep
Gaussian-Process Regression, UAI 2021

Reinforcement Learning: We propose a replacement
of “target networks” by functional regularization [14].
In [15], we propose imitation learning for diverse kinds

of feedback, appropriately re-weighting them.

14. Piche, Thomas, Marino, Marconi, Pal, Khan., Beyond Target
Networks: Improving Deep Q-learning with Functional

Regularization, arXiv 2021

15. Tangkaratt, Han, Khan, Sugiyama, VILD: Variational Imitation
Learning with Diverse-quality Demonstrations, ICML 2020

Al for Social Good: We outline a few guidelines on how
to align Al systems for social good applications [16].

16. Tomasev et al., Al for Social Good: Unlocking the Opportunity

for Positive Impact, Nature communications 2020




