# Al Security and Privacy Team Jun Sakuma 人工知能セキュリティ・プライバシーチーム 佐久間 淳



# Unsupervised Causal Binary Concepts Discovery with VAE

## Motivation

- Explain classification using high-level symbolic concepts
- "Data X is classified as class Y because X have A, B but do not have C"
- Why this image is letter E? Because...



## **Reversible Adversarial Example**

Motivation

- Control how user's data is recognized and used by AI via exploiting the properties of adversarial examples
   Objective
- The reversible adversarial example can be correctly

recognized and used by the AI model specified by the user

Other unauthorized AI models cannot recognize the reversible

**Objective function** 

| $\mathcal{L}(X) = \frac{1}{ X } \sum_{x \in X}$ | $\mathcal{L}_{VAE}(x)$ | $+ \lambda_{CE} \mathcal{L}_{CE} (\mathcal{I}$ | $(X) + \lambda_R \mathcal{L}_R(x)$ |
|-------------------------------------------------|------------------------|------------------------------------------------|------------------------------------|
|                                                 | objective              | objective                                      | regularizer                        |

Label transition by concept switching



(a) Controlling switch  $\gamma_0$  of concept  $m_0$  (bottom stroke) (b) Transition by  $m_1$ 



(c) Controlling switch  $\gamma_1$  of concept  $m_1$  (middle stroke) (d) Transition by  $m_1$ 

- adversarial example correctly Realization of reversible adversarial example
- Combine three technologies, adversarial example, reversible data hiding for exact recovery of adversarial perturbation, and encryption for selective control of AIs who can remove

#### adversarial perturbation.



(Jiayang Liu, Weiming Zhang, Kazuto Fukuchi, Youhei Akimoto, Jun Sakuma, under review)

#### (Thien Q. Tran, K. Fukuchi, Y. Akimoto, J. Sakuma, AAAI2022)

### **One-bit Submission for Locally Private Quasi-MLE**

## Motivation

 Find the model that most likely generated the data with LDP



- SGD-based algorithm is proposed [Bhowmick+,2018]
  - Pros: achieves the minimax optimal rate.

- Cons: (i) High communication cost, (ii) Long waiting time, (iii) Requires bounded derivatives for loss function (data should be bounded)

truncation discretization

**Contribution** : developed an algorithm with

low communication cost (by random discretization)
short waiting time (by non-interactive algorithm)
applicable to unbounded and unknown data domain (by truncation)
theoretical considerations:



## Safe Berthing Control via Min-Max Optimization

#### Motivation

Automatic berthing control task is a risk-critical task of obtaining a controller for berthing of a ship
A controller is obtained on simulation, which includes uncertainties: estimated ship maneuvering model, weather conditions, etc.



Controller optimized on a specific simulation environment tested on **(a)** the same environment and **(b)** a different environment. Collision to berth was observed when the test environment is different from the training environment.

- we show asymptotic normality of the outputs
- ← can be used for statistical tests

- Made some remarks

and recommendations Bi for the users of our algorithm — comparison of computational costs

| Id           | Scenario       | Server                | User            | Wait |
|--------------|----------------|-----------------------|-----------------|------|
| Bhowmick2018 | X pub<br>X pri | $\frac{32(k+d)}{32d}$ | 32d<br>32d      | O(n) |
| Ours         | X pub<br>X pri |                       | $\frac{1}{k+1}$ | O(1) |

Approach

• Solving min-max optimization min max f(x, y)

i.e., optimizing controller x under the worst situation y ∈ Y
A numerical solver relying on black-box local minimizers, CMA-ES, is proposed with its local convergence guarantee

Controller optimized by the proposed approach tested on (c) the worst environment  $y_{worst} \in Y$ . Collision was avoided successfully even on the worst case.



#### (H. Ono, K. Minami, H. Hino, to appear in AISTATS2022)

(Y. Akimoto, Y. Miyauchi, A. Maki, ACM TELO 2022)