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Main Research Directions

1) Mathematical theory and structures coming from/related to Infinite-dimensional Information Geometry and Optimal
Transport, in particular in the setting of reproducing kernel Hilbert spaces (RKHS), infinite-dimensional Gaussian
measures, and Gaussian processes.

2) Theory of RKHS and related methodologies in machine learning and statistics

Gaussian process setting

Focus: Information Geometry & Optimal Transport in Machine Learning & Statistics

® QOur current focus is on Information Geometry and Optimal Transport in the infinite- Let 7" = compact metric space (in general
dimensional setting, in particular in the reproducing kernel Hilbert space (RKHS) and o-compact metric space), ¥ = nondegenerate
Gaussian process settings. For Gaussian measures on Hilbert space and Gaussian processes, Borel probability measure on 7. Consider the
many quantities of interest admit explicit formulas that can be efficiently computed. Gaussian process £ = (£)ier = ({(w,t))ter ON
o ‘ _ _ _ _ a probability space ({2, F, P) with mean func-
Regularization formulations of distances/divergences in both Information Geometry and tion m(t) = E&(#) and covariance function

Optimal Transport possess many favorable theoretical properties over exact formulations, K(s,t) = E[(&(s) —m(s))(E(t) —
such as dimension-independent sample complexities for empirical estimations.

m(t))]. Assume
that fT m?(t)dv(t) < oo, [, K(t, t)dv(t) < oo.
There is a one-to-one correspondence between
measurable Gaussian process GP(m, K) <=
N(m,Cg) (Gaussian measure) on H =
LZ%(T,v), with covariance operator

Case study:Regularized Rényi and Kullback-Leibler (KL) divergences
For two Gaussian densities N (m, C7), N (m2,Cs) on R", the Rényi and KL divergences are

| B 1 o
Dr (N (m1, C1)||N(m2,C2)) = 5(?‘?’12 —mq, [(1 —7)Cy +rCa] ™ (ma — my)) + §d12c}gdét(cla Cs), (Ck f)(s) = /T K (s,t) f(t)dv(t)
_ 1 —1 L
KL (m1, C1)||N (m2, C2)) = §(m2 —ma, Gy (m2 —ma)) + §dlﬂgd9t(cl" C2). Distances/divergences between Gaussian
a4y ige processes £ = GP(m;, K*),i = 1,2
Here df;gdet(A B) = _4&2 log det("g_ 1_ At BL, 1 <a<1,is the Alpha Log-Determinant di-

det(A)

det(B) DGP(glllgg) :D(N(mlaCKI)IIN(mQﬂCKQ))
vergences with limiting cases d

Inget(A B) = limg_,1 dlﬂgdet(A? B) =tr(B~ 1A — 1) —logdet(B~1'A)
dl_c}gdet (A,B) =limg,_1 df} 40 (A, B) = tr(A~'B — I) —logdet(A~'B). These formulas do not Finite-dimensional approximations rely

generalize to the infinite- d1mensi0nal setting since tr and log det are not always well-defined. crucially on RKHS covariance and cross-
Regularized Rényi and KL divergences between Gaussian measures on a Hilbert space H. Let covariance operators R;; = RgiRj;
mi,mo € H and Cq,C5 &€ Sym+(?{) N Tr(H). Let v € R,y > 0 be fixed. The reqularized Rényi Hii — Hrii, Rij = fT(Ki ® Kj)dv(t),
divergence of order r, between the Gaussian measures N (m1, Cy), N (ms, C>), is defined to be Rijf@) fT K(z, t)f(t)dy(t) feHi
Dy N (m1, C1)[IN (ma, C2)] = S (ma —ma, [(1 = r)(Cr + 1) +r(C2 +41)] 7 (m1 — m2)) “# ik ,J;r, o " .
1 o1 c:l.“ Jlll |'|,-| A" J’/ﬂ i '| "I }#&A;. {1: X H 1“.‘{; xf, :x {‘
T3 SAiogdes (C1 + 1), (C2 +~1)], 0 <r < 1. “’\ Vy i N

Here for A, B € Sym(H)NTr(H), A+~I >0,B +~I >0, 1,0 da ws oh os de or o na S0 e de vs o de dr o g

Samples of the centered Gaussian processes

1—a 1ta
Ay gaenl (A + 1), (B +~1)] = - _4&2 log | e (Z7(A+ 1) A (B+'};2) | GP(0,K'), GP(0,K2) on T = [0,1]. Left
dEtX(A+’YI) N dEtX(B + 1) 2 K'(z,y) = exp(—allzr — y||), a = 1. Right:
b paer (A + 1), (B +~1)] = trx[(B +~1) " (A +~I) — I] — logdetx [(B + 71) L(A + ~1)], K?*(z,y) = exp(—|lz — y|[*/0?), o = 0.
diogaes (A +7D), (B +~1)] = trx[(A+~+1)"H(B +~1) - f: — logdetx [(A +~I)~ (B +~I)]. 000 [ ——
3500 ﬂ"ﬁ*_
Here trx (A +~vI) = tr(A) + ~, detx (A + ~vI) = vy det (I — %) are the extended trace and extended 2000 | ;ﬁ T Ry ros | -
Fredholm determinant. The regularized divergences are finite for all pairs of Gaussian measures. veoa | R
Theorem 1. Let vy = N (m,Cy), v = N (m,C), m € H,Cy,C € Sym™+(H) NTr(H), be two equivalent 2000
Gaussian measures, that is m — mg € range(C,;ﬁ) and there exists S € Sym(H) N HS(H) such that 1500 |
C = CSKQ(I — S)CSKQ. Then, with the Hilbert-Carleman determinant deto(I — S) = det[(L — 5) exp(5)], 1T
lim, D (vllt0) = Dt (vlv0) = g logdet[(I = )~ (I = (1 = 1)$)} B
1 0 100 200 300 400 500 600 700 800 9S00 1000
lim KL7(v||vg) = KL(v||rg) = —= logdeta (I — .5).
y—07F 2 Approximate divergences between the above
centered Gaussian processes from finite covari-
ance matrices, with m = 10,20,...,1000. The

Theorem 2 (Estimation of regularized Rényi and KL divergences between centered Gaussian
processes from finite covariance matrices). Let v € R,~ > 0 be fixed. Let 0 < r < 1 be fixed. Let
X = (z;)7L, beindependently sampled from (T, v). For any O < 6 < 1, with probability at least 1 — 9,

regularization parameter is v = 10~°
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