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チームメンバー

作用素スペクトルを用いた隠的深層ニューラルネットの近似モデル【２】

代表的な陰的深層ニューラルネットの一つである Deep Equilibrium Models (DEQs) の
入力から出力への動力学をKoopman作用素のスペクトルを用いて近似することで，
大幅に少ないパラメータで同等の性能を持つモデルを提案

異常検知におけるシャープリー値を用いた異常説明手法 【３】

シャープリー値を用いて，異常サンプルにおける特徴量の寄与度を与えることで，異常
検知においてその解釈可能性を与える枠組みを構築
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Stable Invariant Model (提案法)
→
DEQのダイナミクスをKoopman作用素
のスペクトルを用いて近似

Feedforward 
NNsで与える

z*が平衡点(又は安定不変集合上の点)
の場合，行列演算で計算可能

→計算量を大幅に削減，計算が安定

Table 1: Test cross-entropy loss and the number of learnable
parameters in the copy memory task.

Test loss #parameters
DEQ (Transformer) 2.24113e-09 17,010
Single-tier (TCN) 7.02967e-09 17,294
Two-tier (TCN) 5.06078e-08 17,294
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Figure 3: Training losses along (a) run-time, and (b) epochs
for three compared methods in the copy memory task.

of hyper-parameters on training data and evaluated them on
validation data. We then selected the best hyper-parameter,
re-trained the model with the best one, and finally evalu-
ated the trained model on test data. We implemented all the
models in Pytorch (Paszke et al. 2019) and used Tune to
select hyper-parameters in both of models and training algo-
rithms (Liaw et al. 2018).

All the details of the datasets, model architectures, and
training algorithms are described in Appendix B.

5.1 Copy Memory Task

We first report the results of the copy memory task (Hochre-
iter and Schmidhuber 1997) to reveal the effectiveness of
Stable Invariant Models against the original DEQ. To this
end, we followed the experimental procedure of (Bai, Kolter,
and Koltun 2018). The goal of this task is to predict a se-
quence of digits of length T + 20 from another input se-
quence of the same length. The first ten elements of the in-
put sequence consist of digits randomly drawn from 1 to 8,
the subsequent T � 1 elements are filled with 0, and the last
eleven elements are all 9. Given this input, the first T + 10
elements of the output sequence are 0 and the last ten ele-
ments are the same as the first ten ones of the input sequence.
Hence, this task evaluates how well a model can remember
the first elements of an input. In our experiments, we set T
to 500. After selecting the best hyper-parameter, we ran ex-
periments to evaluate the models on test data.

We applied the Universal Transformer (Dehghani et al.
2019) as the base function f of the DEQ. We basically
followed the implementation of (Bai, Kolter, and Koltun
2019a). For Stable Invariant Models, we chose the temporal
convolutional network (TCN) to represent µNN by following
the implementation of (Bai, Kolter, and Koltun 2018): the
architecture includes 1D dilated causal convolution, ReLU

activation, and residual connection (He et al. 2016).
Table 1 shows the test cross-entropy loss per sequence

and the number of learnable parameters for each model.
While the DEQ achieved the lowest test loss, the single-tier
model obtained comparable performance with almost the
same number of learnable parameters. Figure 3 (a) shows
the progress of the training losses along run-time for 20
epochs when we re-trained the models after selecting hyper-
parameters. The training speed depends on the batch size.
During the hyper-parameter search, 1, 1, and 10 were se-
lected as the batch size for the DEQ, single-tier model, and
two-tier model, respectively. Hence, the two-tier model was
the fastest to complete the training. For the DEQ and single-
tier model, the single-tier model was ten times faster than the
DEQ under the same batch size. Figure 3 (b) shows that the
progress of the training losses along epochs. We can observe
that the single-tier model converged faster than the DEQ.

5.2 Image Classification

We next report the results of the image classification task
to compare Stable Invariant Models to monDEQs that guar-
antee stable convergence to a fixed point. We followed the
experiment of image classification conducted in (Winston
and Kolter 2020). We prepared the CIFAR-10 (Krizhevsky
2009), SVHN (LeCun et al. 1998), and MNIST (Netzer et al.
2011) datasets all of which contain images in different 10
classes, and evaluated the classification performance in the
standard setting. Following (Winston and Kolter 2020), we
evaluated the models on test data three times with different
initialization and report the averaged performance.

For Stable Invariant Models, we employed convolutional
neural networks (CNNs) for µNN. Following the VGG mod-
els (Simonyan and Zisserman 2015), µNN consists of two
convolutional layers each of which has two convolution fil-
ters with ReLU activation and batch normalization and one
max pooling. The output of the convolution layers is addi-
tionally transformed by a linear layer to fit the dimension
of the lifted space. We constrained the number of learnable
parameters of Stable Invariant Models in order to be compa-
rable to the one of monDEQs in (Winston and Kolter 2020).

Table 2 shows the mean of the test accuracy over three
runs of monDEQs and Stable Invariant Models. Stable In-
variant Models showed comparable or better performances
compared to monDEQs for all datasets. In particular, the
performance was improved for the CIFAR-10 dataset even
though the Stable Invariant Models have a similar number
of learnable parameters to monDEQ ones.

5.3 Image Regression

Finally, we report the results of the image regression task
which is an example of implicit neural representation tasks.
The goal of this task is to obtain a function represented by
a neural network where the input is a 2-D pixel coordinate
and the output is its 3-D RGB value. The network is trained
by a dataset that corresponds to an image and includes a set
of pairs of a pixel and the RGB value. Following (Tancik
et al. 2020), we evaluate Stable Invariant Models with 32
datasets which consists of 16 natural and text images. For an
image, we picked 1/4 pixels as training data and other 1/4
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Copy memory taskにおける数値例
（Single-tier（橙），Two-tier（緑）が提案手法）
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公開データ (Thyroidデータ) における提案手法の結果の例

左図： サンプルの（5つの特徴量の各ペアに対する）散布図

右図： 異なる分類器（各列）における計算されたシャープリー値

（各行は左の記号で表されるサンプル例）
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e : X æ R
e(x)

v(S; x) := e(xı(S; x))
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Figure 1: Proposed characteristic function, v(S; x) in Eq. (2), for attributing an anomaly score e : X æ R.
x has d features, which are split into disjoint sets S µ {1, . . . , d} and S

c = {1, . . . , d}\S. v(S; x) is defined
as a local minimum of e(x) in the proximity of x (i.e., Mx) with xS fixed at the original. Although the axes
of xS and xSc are depicted as one dimension, they are |S|- and |Sc|-dimensional in general.

choose a reference value adaptively using the influence weights between a query data point x and a training
dataset. Such a reference is adaptive to x but not to S, meaning the same reference value is used for every S.
We also note that their method requires storing enough portion of training data, which may be undesirable
in some applications of semi-supervised anomaly detection.

Takeishi (2019) adopted the marginalization-based approach to defining v for the anomaly score computed
with the probabilistic principal component analysis. Because the conditional expectation is available for the
probabilistic PCA models, the marginalization can be computed exactly. This approach is free from choosing
a reference value, but the type of applicable anomaly detection models is obviously restrictive. Moreover,
considering conditional distributions under the presence of anomalies is not necessarily meaningful because
the learned distribution is no longer reliable for out-of-distribution data points.

3 Anomaly score attribution with the Shapley value

We propose a definition of the characteristic function that takes into account the nature of anomaly scores.
We take the reference-based approach; di�erently from the existing studies, the proposed method determines
the reference value, r·, adaptively to both x and S and without referring to training data.

3.1 A characteristic function for anomaly scores

Let e : X æ R be an anomaly score function that outputs a large value when the input, x œ X µ Rd, is
anomalous. We propose to define a characteristic function, which we will denote by v(S; x) to manifest the
dependency on x, for an anomaly score e as follows. Recall that we want to design v(S; x) that simulates the
“absence” of the features not in S. In other words, v(S; x) should represent how anomalous xS is with the
remaining features xSc ignored. To this end, we define v(S; x) as the smallest value of the anomaly score,

e, achieved in a neighborhood of x with xS being fixed. Rephrasing the idea, v(S; x) is defined as follows:

v(S; x) := e(xı(S; x)), where xı(S; x) := arg min
y

e(y) s.t. y œ Mx µ X , yS = xS . (2)

The constraint of the optimization, Mx µ X , is some compact neighborhood of x œ X . Figure 1 illustrates
the idea; while xS is fixed at the original value, xSc is moved within Mx so that the value of e is minimized.

The characteristic function in Eq. (2) enables us to examine how e(x) becomes large solely due to the features
in S. Although it falls in the category of reference-based characteristic functions, it is di�erent from the
general methods in which the absence of features is simulated by the replacement with predefined reference
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let D = {1, . . . , d} denote the set of all players. This function v is called a characteristic function. A game
is defined as a pair (v, D). The Shapley value of (v, D) is to distribute the total gain v(D) to each player in
accordance with each one’s contribution. The Shapley value of the player i œ D, namely „i, is the weighted
average of the marginal contributions, that is,

„i =
ÿ

S™D\{i}

|S|!(d ≠ |S| ≠ 1)!
d! (v(S fi {i}) ≠ v(S)) , (1)

where S denotes a subset of D\{i} = {1, ..., i ≠ 1, i + 1, ..., d}, and the sum is taken over all the subsets.
The Shapley value has been utilized for interpreting outputs of statistical machine learning (e.g., Lipovetsky,
2006; ätrumbelj & Kononenko, 2014; Datta et al., 2016; Lundberg & Lee, 2017; Sundararajan et al., 2017;
Owen & Prieur, 2017; Ancona et al., 2019; Olsen et al., 2022), where the players of a game mean input
features, and the gain of the game means the output of a machine learning model.

Major challenges in utilizing the Shapley value include the following two points:

(i) How to compute the summation for O(2d) terms (i.e.,
q

S™D\{i} in Eq. (1))?
(ii) How to define a characteristic function v?

The former challenge, the exponential complexity, is a general di�culty and not limited to machine learn-
ing interpretation. A common remedy is Monte Carlo approximations (see, e.g., Castro et al., 2017, and
references therein). In this work, we also use a Monte Carlo approximation and compute {„i} using the
reformulation of Eq. (1) as a weighted least squares problem (Charnes et al., 1988; Lundberg & Lee, 2017).
We will describe its concrete procedures later in Section 3.2.

The latter challenge, the definition of v, rises specifically in interpreting machine learning because v(S)
should simulate the “absence” of the features not in S for a machine learning model. It is, in principle, a
question that admits no unique solutions; the most straightforward definition would be based on re-training
of models for all subsets of D, which is not realistic in practice. We will see the existing approaches in the
next subsection, Section 2.3.

2.3 Approaches to defining characteristic function

In the use of the Shapley value for machine learning model attribution in general, a characteristic function
v has often been defined in either of the following two approaches:

Reference-based approach replaces the values of “absent” features by some reference values (Sundarara-
jan et al., 2017; Lundberg & Lee, 2017; Ancona et al., 2019). Suppose x = [x1, . . . , xd] œ Rd. Let us denote
the subvector of x corresponding to index set S µ {1, . . . , d} by xS œ R|S|. Let S

c := {1, . . . , d}\S be the
complement of S. Then, the value of v for a machine learning model h : Rd æ Y, where Y is some output
space, is defined as the value of h on a sample where xSc is replaced by some reference value rSc œ R|S|.
A challenge here is to choose a good reference vector rSc . rSc is often set to be zero or average of xSc ,
but there is no unique definition.

Marginalization-based approach marginalizes out “absent” features (ätrumbelj & Kononenko, 2014;
Datta et al., 2016; Lundberg & Lee, 2017; Olsen et al., 2022). That is, v is computed as the condi-
tional expectation of h(x) given xS , where xSc is marginalized over some distribution p(xSc | xS). A
challenge here is the computation of the conditional expectation, which is intractable in general. Typically,
it is approximated via nearest neighbors in training data. Meanwhile, Sundararajan & Najmi (2020) ar-
gues that the marginalization-based approach loses some nice properties as attribution because it depends
not only on the target function h but also on the data distribution. If the features are independent, this
approach reduces to (the average of) the reference-based one with multiple reference vectors.

Apart from the general point of view, we now briefly review how the Shapley value has been used for
attributing anomaly scores. Giurgiu & Schumann (2019) and Antwarg et al. (2021) adopted the reference-
based approach to defining v for anomaly scores. Since a good reference vector r· depends on a query data
point x and a target feature set S, it should be determined adaptively to both x and S. However, in Antwarg
et al. (2021), the reference does not depend on x nor S in principle. Giurgiu & Schumann (2019) proposed to
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(変数の索引全体)

where

（提案する）特性関数：

論文中では，この特性関数の効率的な計算方法も構築

クエリとなるサンプル xに対して，その近傍
Mx内で，変数集合Sは値を固定した場合の
異常スコア eの極小点を特性値として利用

(異常スコア) (クエリ xの近傍)

二体近似 三体近似一体近似

表現力
大

ランク１分解，平均場近似と一致

非負のテンソルデータに対する多体分解法

画像データに対する適用例
画素(w,h), 色(c), 画像(i) 間の相互作用を陽に指定することで直感的な分解を実現

オブジェクトの形の抽出各画像毎の色の傾向

モデルに潜在変数を仮定すると，解空間の平坦性が失われ，最尤推定が非最適化問題となる😢
→ 可視変数間の高次の相互作用のみでのモデリングで，凸最適化での安定な分解法を実現 😄

非負テンソルを情報幾何学の自然パラメータθで特徴づけ，その一部を削減する近似

画像データから学習された相互作用を見るとパターンの抽出ができている．

色と画像の相互作用を無視．
再構成はモノトーン調．

凸最適化による分解のため，従来の初期値依存性の問題が生じない😄

【１】 テンソル多体分解 --凸最適化による高次相関の解析法 --


