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1) Mathematical theory and structures coming from/related to Infinite-dimensional Information Geometry and Optimal
Transport, in particular in the setting of reproducing kernel Hilbert spaces (RKHS), infinite-dimensional Gaussian

measures, and Gaussian processes.
2) Theory of RKHS and related methodologies in machine learning and statistics

Focus: Information Geometry in Statistics and Machine Learning
* QOur focus is on Information G in infinite dimension, in particular in the reproduc-
ing kermnel Hilbert space (RKHS) and stochastic process settings. In the setting of Caussian
measures on Hilbert space and Gaussian processes, many quantities admit explicit formulas.
* The regularized formulation possesses many favorable theoretical properties, such as
dimension-independent convergence for empirical estimations.
Fisher-Rao metric on the sel of Gaussian densities (with respect to Lebesgue measure) on
R"™. Let Sym**(n) denote the set of n x n SPD (symmetric, positive definite) matrices. There
is a one-to-one correspondence between Sym**(n) and the set S of multivariate zero-mean

Gaussian densitics on R, S {P(:;O) = Ty = (=20 1) 0 c e}.whme -

{nfp',...,a‘*],g- ~ mingh) ):(o)cs,-m-“(n)} The Fisher information matrix is defined by
9:5(0) = Jou o 2521}’(1-0)& 1<4,5 <k.lfgmstmﬁypouhw,ndcﬁncsaﬂmun

mctric on S, called Fisher-Rao metric, or Fisher @ metric. Explicit expression for Fisher-Rao
metric on S: gg;(0) = dtr [ '(*))) g 1 < i,j < k. This cornesponds to the affine-
invariant Riemannian metric on Sym™* ¥ (n)

A, 13 € Sym(n) = Ty(Sym* ¥ (n))

Information Geometry of infinite-dimensional Gaussian measures - sample results

Challenges in the infinite-dimensional setting: (i) no Lebesgue measure on infinite-dimensional
Hilbert space; (ii) density functions do not exist; (iii) we cannot define the Fisher-Rao metric on the
sct Canss(H) of all Caussian measurcs on a Hilbert space H.

Solution: Consider set of probability measures equivalent to a fixed measure g, so that Radon-
Nikodym densities with respect to jug exist. Let Cp € Sym™ () N Tr(#) be fixed, with ker(Cp) = 0.
Let pg = N(0, Cp) be the corresponding Gaussian measure. Define the following set

SymHS(M)<s = {S : § € Sym(7) N HS(N(), I — § > 0} ¢ HS(7() (set of Hilbert-Schmidt operators)

(A, By — %o: V2 Ay W2y Mgy Wy, %uo: LA m),
.

which is a Hilbert manifold. Define the following subset of the set of positive, trace class operators
Te(M, Cp) = {C € Sym™* (1) NTH{N) : C = Cy*(I — S)Cy *for some S € SymHS(1() <, }.
The corresponding set of Gaussian measures equivalent to ug
Gas(, po) = {p = N(0,C), C € Tr(M,Co)}

This is an infinite-dimensional statistical manifold parametrized by § € SymHS(7();. For a fixed
S € SymHS(H).<; and s = N(0,Co/*(I — S)CL'®), the Fisher-Rao metric at S is defined to be, for
Vi, Va € Ts(SymHS(7) <1) = Sym(?) N HS(7(), the tangent space of SymHS(7{)<; at S,

asviva) - [ ”lnu{ (x)} (S)(V.)rm:{ (z)}(s')mm:)
Theorem 1 ( Riemannian metric ). Let S € SymHS(H).; be fixed. Then
S Wi

as(Vi, Va) — 3erl(1 5)Wal, Vi, Va € Sym(H) N HS(H).

The corresponding Ricmannian metric on Tr(H, Cy) is given as follows. 1et 3. € Tr(H,Cy) be fixed. For
Ay, Az € Ti(Tr(H, Co)) = SymHS(H, Co) = SymHS(H, ¥) = {V = G ACY, A € SymHS(H)}.

(Ay, A)e — %{x-'f’A.s-'f’.L-'ﬂA,n-'f’) - %mx-'ﬂA,x-'A,x-'ﬂ).
There is @ unique geodesic connecting any pair A € Tr(M, Cy), B = AV (I — S)A'? & Te(NU, Cyp)
Yan(t) = A explt bog(l — S) A2
The length of this geodesic is the Riemannian distance between A and B
drm(A, 1) = =gl g (A2 BA s ~ —glllog(!  5)lns-

Connection with the affinc-invariant Riemannian of positive definite Hilbert-Schmidt
operators: for duns|(m 7 + A), (vl + B)] = |[log{(A + 1 d) 2B 4 wI)A 1 I) P )llus .

Jim, duns{(y! + A), (v 4 B)) = Wiog(! — SHins, for 13 < AY2(1 -~ S)AM? € Tr(H, Co)

Gaussian process setting

Consider the Gaussian process £ =
(£(w,1))ecr on a probability space (12, }- P)
with mean function m(t) — E£(t) and covari
ance function K(s,t) < E[(&(s) — m(s))(&(t)
m(t))]. Assumec that m3(t)duv(t) < oo,
_’:,.K(tt}d.v(t) < oo. i= 3 one-to-one
between meassurable CGaussaan
prur.w GP(m, K) <> N(m,Cx) (Gaussian
measure) on U = L2(T, v), with covariance
erator (Cx f)(s) = [y K(s,8)f(e)du(2).
Distances/: between Gaussian
processes £ — GP(m;, K*),i — 1,2
Dcp(£'11€%) — DN (my, Cxr )W (M2, Cx>))

Theorem 2 (Dimension-independent sample
complexity for regularized version ). Lef v ©
R,y > 0 be fixed. Lt X — (x,), be indepen-
dently fm-(‘!'v) Forany0 < & < 1,
with ity af least 1 — &,

la... [(‘yl + :x'(x]) ; (-yl' + ix’pq)l

duaa [(9F 1 Cyen), (97 1 Cpa)ll
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of the centered Gaussian processes
NO,K"), N(0,K*) on T — [0,1] and approx-
imations of squared distances between them.
left: K'(z,y) ~ exp(-allz ). @ ~ 1L
Right K(z,y) — exp( allzr sl a ~ 1.2
Here the number of sample paths is N =
(10,20, ..., 1000, and 5 = 10 7
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