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Our Vision and Social Impact:

B Develop trustworthy machine learning methods/algorithms that can
cope with imperfect training information like distribution shift, noisy
labels, partial labels, and pseudo-supervision.

B Enable machine learning for real-world applications in imperfect or
adversarial deployment environments such as robust image/video
classification and sample-/label-efficient text classification.

Weakly Supervised Learning (WSL)

Selected-Completely-at-Random Complementary-Label Learning
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Unlocking the Power of Co-occurrence in Multi-Label Learning

X: target object

B Multi-Label Learning (MLL): Every instance has multiple class labels.

W Motivation: Co-occurrence helps through the path (X, Z2) 2> 0 2 Y.
However, a serious issue is overfitting to co-occurrence even when
only co-occurring objects are present through the pathZ > 0O 2 Y.

B Methodology: Keep the positive impact and mitigate the negative impact of the mediator O, achieved
by masking the co-occurring object Z and thus strengthening the direct causal effect caused solely by
the target object X. Since the location of X is unknown, we proposed a patching-based inference.

Z: co-occurring object
O: correlative features

¥: model prediction

— : causal link

65 ;2 70 70
BN | Bl | B 86| e
=55 S0 T T | = =
U 507 —— cap U 55 O 55 O
—o— AT 50 55
45 ADSH SU 50
i 3 35 7 9 11 i 3 3 7 9 11 i 3 35 7 9 11 i3 35 7 9 11
. Epoch Epoch Epoch Epoch
direct causal effect poc poc poc poc
(a) p = 0.05. (b) p=0.1. (c) p=0.15. (d) p=0.2.

Xie, Xiao, Peng, Niu, Sugiyama & Huang (ICML 2024)

Soft-Label Integration for Robust Toxicity Classification

M Spurious Features: Wrong correlations between text snippets and the whole-document class label.

B Motivation: Once we have several annotators (for the same document), we can integrate hard-labels
(0 or 1) from them into soft-labels (O to 1) to weaken the negative impact of spurious features.

B Methodology: We proposed a bi-level optimization method that alternatively updates the integration
weights of the soft-labels and the model parameters of the classifier for robust toxicity classification.
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Efficient Sequential Distribution Shift Adaptation by Wavelets

W Sequential Distribution Shift: This is the problem of learning from streaming data in non-stationary
environments, where the underlying data distributions sequentially change over time.

W Motivation: Most existing methods use an ensemble-based approach to sequential adaptation which
requires maintaining multiple models and then results in high computation overhead.

B Methodology: We proposed an adaptive restart method equipped with wavelet detection, capable of
swiftly identifying distribution shifts while enjoying low computation and storage costs.
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Test-Time Adaptation in Non-stationary Environments

W Test-time Adaptation: The trained model is adapted to new test distributions that evolve over time,
no matter whether distribution shift has been considered during training or not.

B Motivation: Most existing methods focus on adapting models to a fixed test distribution, and hence
they struggle to handle evolving test distributions for the entire non-stationary test data stream.

W Methodology: We proposed a novel adaptive representation learning method to align non-stationary
test representations with no-longer-accessible training data using a training representation sketch.
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Self-Supervised Learning (SSL)

Higher-Order Difference Regularization

Motivation: Existing SSL methods cannot restrict
the variation of representation differences, leading
to overfitting representations whose differences
may have totally different lengths or directions.

Methodology: We proposed a novel difference
alignment regularization (DAR) that encourages all
representation differences between any two inter-
class instances to be as close as possible. Thus, SSL
methods can produce better representations with
length-and-direction-consistent differences.

Chen, Niu, Gong, Koc, Yang & Sugiyama (ICLR 2024)

Motivation: The inter-subgraph similarities are
estimated with the instance-wise outputs, and
thus they can hardly reveal the underlying data
distribution. Meanwhile, they neglect the critical
intra-heterogeneity in each subgraph itself.

Methodology: We used a variational model to
infer the whole data distribution. We disentangled
a given subgraph into multiple latent factors and

partition the model parameters into multiple parts

to encode useful latent factors.

Yu, Chen, Tong, Gu & Gong (AAAI 2025)
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New Directions

Chain-of-Thought Generation for Large Language Models
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Chain-of-Thought (CoT): CoT generation methods were proposed to guide large language models to
reason step-by-step, enabling them to better handle complex problems.

Motivation: Most existing CoT methods rely on pointwise evaluations from large language models
to select promising intermediate thoughts, overlooking the fact that those evaluations are noisy.

Methodology: We proposed a pairwise-comparison evaluation method by asking “Which of these
two thoughts is more promising?” instead of “How promising is this thought?” with noise reduction.

Chain-of-Thoughts Score-based Tree-of-Thoughts (S-ToT) Comparison-based Tree-of-Thoughts (C-ToT)
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Generalization Analysis for Calibration Performance

B Calibration: How well do the predictive probabilities align with the true class-posterior probabilities?
B Motivation: We aim to theoretically assess the reliability of the expected calibration error (ECE), a
nonparametric estimator of the true calibration error (TCE) via binning commonly used to measure

the calibration performance.

7 °® Previous SOTA

Accuracy of different methods against their token costs.

B Key Results: We analyzed two properties of ECE: (i) the bias of ECE (the gap from ECE to TCE), and (ii)
the generalization error of ECE (the gap from training ECE to test ECE), revealing that their slow
convergence rate highlights the necessity of low-bias calibration evaluation.

Can be bounded by
conditional mutual information (CMI)

Gen. Err. of ECE via binning
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Futami & Fujisawa (NeurlPS 2024)

Our bound provides a non-vacuous evaluation of the
generalization of the calibration performance
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An Algebraic and Logical Approach to Representation Learning

B Disentangled Representation Learning: Separating explanatory factors such as color and shape in
complex data is promising for robust, generalizable, and data-efficient representation learning.

B Key Results: By establishing algebraic relationships between logical definitions (logical connectives
and quantifiers) and quantitative metrics (quantitative operations and aggregators) of the desired
properties, we can derive theoretically grounded evaluation criteria and learning methods.
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