
VV
V

INPUT

Divided into P 
patches

For each of the P patches attach 
the neighbouring patches within 

a certain window size

SVD SVD

 Pairs of Neighbourhood and Center Patch

mean over 
patches

mean over 
patches

SVD

mean over 
patches

SVD

mean over 
patches

SVD

mean over 
patches

SVD

mean over 
patches

V1 V V

VV
V

V2 V

VV
V

V3 V

VV
V

V13 V

VV
V

V14 V

VV
V

V25
Duplicate Patch & Vi=1,..,25 

WW
WW

WW
WW

WW
WW

WW
WW

WW
WW

1
4

WW
WW

Weights of Category I, II or III 

Reconstruct Image from Patches

Locally Calor Symmetry invariant 
under Category I, II or III , respectively

Structured Learning Team
Yoshinobu Kawahara
構造的学習チーム 河原 吉伸

FY2024/2024年度

【構成メンバー】

・ チームリーダー（PI）： 河原吉伸
・ 研究員： Matthias Weissenbacher (〜2024.9)
・ 特別研究員： Velmurugan Gandhi，坂田逸志
・ 基礎科学特別研究員： ガラムカリ和 (〜2025.1)
・ テクニカルスタッフI：西村能輝
・ 客員研究員： 藤井慶輔，武石直也，小西卓哉，橋本悠香
・ その他，4名の研究パートタイマー（博士前期・後期課程学生）

2024年度中の主要な成果
【1】 分布外データに頑強な深層強化学習モデルの提案 [1, 2]

【2】 連続スペクトルの擬固有関数を用いた非線形力学系のスペクトル解析 [3]

【3】 マルチエージェント系における反実仮想介入効果の推定モデルの提案 [4]

主要な
発表文献

[1] M. Weissenbacher, R. Agarwal and Y. Kawahara, "SiT: Symmetry-invariant Transformers for Generalisation in Reinforcement Learning," Proc. of ICML'24, PMLR 235:52695-52719, 2024. 
[2] M. Weissenbacher, E. Routis and Y. Kawahara, "Self-supervised Color Generalization in Reinforcement Learning," Transactions on Machine Learning Research (TMLR), 2024. 
[3] I. Sakata and Y. Kawahara, “Enhancing spectral analysis in nonlinear dynamics with pseudoeigenfunctions from continuous spectra,” Scientific Reports, 14(1), p.19276, 2024. 
[4] K. Fujii, K. Takeuchi, A. Kuribayashi, N. Takeishi, Y. Kawahara and K. Takeda, "Estimating counterfactual treatment outcomes over time in complex multi-agent scenarios," IEEE Transactions 

on Neural Networks and Learning Systems (採録済).
下線 =>
チームメンバー

連続スペクトルの擬固有関数を用いた非線形力学系のスペクトル解析 [3]

スペクトル理論における擬固有関数をクラスタリングすることで、連続スペクトルで記
述されるノイズやカオスを含んだ非周期的なダイナミクスを解析できる方法を提案

非周期性をもつ時系列は連続スペクトルを持つ

連続スペクトルを反映したKoopaman作用素の擬スペクトルを計算[Cokbrook+ 24]

クラスタリングされたモード集合として信号のモード分解に成功！

提案手法：擬スペクトルに対応する疑固有関数のクラスタリング
Pseudoeigenfunctions

Spectral
Clustering

decomposition as  mode 
sets

埋め込んだ空間で分類

⾮周期性を持つ2つの⼈⼯信号の合成データ

従来：離散スペクトルのみ
考慮したモード分解

提案：連続スペクトルも
考慮したモード分解

データとKoopman作⽤素のスペクトル候補対（λ:擬固有値、g:擬固有関数）との残差

複素平⾯上での疑スペクトル：残差が⼩さい⿊い領域が連続スペクトルに対応
（⾚点はExtended-DMD[Williams+ 15]の固有値）

マルチエージェント系における反実仮想介入効果の推定モデル [4]

分布外データに頑強な深層強化学習モデルの提案 [1,2]

1. グラフ上の不変性・等価性を保存する注意機構を持つトランスフォーマーに基づく
深層強化学習の提案 [1]
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captured by the equation: f(⇢(g) · s) = ⇢
0(g) · f(s) for

every transformation g in the symmetry group.

Attention mechanisms. Recently, conventional self-
attention have been employed in the context of RL agents
(Tang & Ha, 2021). The permutation invariant self-attention
layer (Lee et al., 2019) uses a fixed Q-matrix (queries). The
original ViT architecture (Dosovitskiy et al., 2020) natu-
rally admits permutation invariance (PI) due to use of token
embeddings. PI is only broken by using the positional em-
bedding (Romero & Cordonnier, 2021; Fuchs et al., 2020).
The standard attention is given by

Att(K,V,Q) = softmax
⇣

1p
df

QK
T
⌘
V , (1)

where K, V , and Q denote the keys, values, and queries
respectively. They are derived from the input X: K =
XW

k
, V = XW

v
, Q = XW

q, where W
q, W k, and W

v

are the corresponding weight matrices. The keys and values
are constructed based on the input data, which is segmented
into P patches. Consequently, the matrices K, V , and Q

have dimensions RP⇥df , where df represents the feature
dimension for each patch.

Graph neural networks and graph attention have been ex-
tensively explored in terms of their symmetries (Veličković
et al., 2018; Satorras et al., 2021b). At a high-level, the
graph attention mechanism (GAT) determines the relation-
ships between nodes in a graph using attention. The atten-
tion matrix equation 1 is masked with the adjacency matrix
G to ensure that the attention coefficients are only computed
for nodes that are connected in the graph

GAT (K,V,Q) = softmax
⇣

1p
df

QK
T
⌘
G V, (2)

with K,V,Q being the feature vectors of the nodes, multi-
plied with weight matrices. A symmetrisation of the score
matrix may be added.1 to ensure that connections between
nodes are bidirectional, meaning their importance is consis-
tent regardless of direction.

3. GSA: Symmetry-Invariant and Equivariant
Attention

In this work, we propose a modification of the permutation
invariant attention layer (Lee et al., 2019). This adaptation is
specifically designed to respect the inherent symmetries of
a square two-dimensional grid, which serves as our underly-
ing graph structure. These symmetries include translations,
rotations, and flips, as depicted in Figure 2. Our approach
is an evolution of the rotary embedding method (Su et al.,

1Symmetrisation over the node / vertex indices given by
symmetric(M) = Mij + Mji for i, j = 1, . . . , P for a square
matrix M 2 RP⇥P .

2021). Our Graph Symmetric Attention (GSA) layer is con-
ceptually similar to a traditional graph-adjacency matrix.
Our graph topology matrix G is the analog of the adjacency
matrix in equation 2 ; however, its trainable weights are
uniquely constrained to abide by certain symmetry condi-
tions, which we discuss later. While our discussion centers
on the 2D grid, GSA may be adapted to 1D data where it
ensures shift-symmetry (optionally flip-symmetry), see A.1.

For clarity, imagine a 9⇥ 9 pixel image. When segmented
into 3 ⇥ 3 pixel patches, we get 9 distinct patches. In the
local GSA setup, each graph vertex corresponds to an indi-
vidual pixel, suggesting that in Figure 2, the term "patches"
is synonymous with pixels. In contrast, the global GSA
interprets the image as a collection of 3⇥ 3 patches, where
each patch’s central point is symbolized by a graph vertex,
aligning with the conventional ViT perspective. Taking in-
spiration from self-attention in graphs, we propose Graph
Symmetric Attention (GSA):

GSA(K,V,Q) = softmax
⇣

1p
df

�(Q,K)
⌘
Gv V (3)

with the attention score matrix given by

�(Q,K) = symmetric
⇣ �

Gq Q [ Gk K ]T
�
� G

⌘
,

where � is the point-wise Hadamard product. Here, � is in-
terpreted as the attention graph matrix of the underlying 2D
pixel grid. Analogous to equation 2, the grid symmetries are
imposed by a graph topology matrix G which breaks permu-
tation invariance of the standard self-attention (equation 1).
Assuming that the image is split into P patches, the graph
matrices Gk,v,q 2 RP⇥P⇥df and G 2 RP⇥P⇥# heads are
to be chosen for each feature/head from either of the differ-
ent symmetry preserving graph matrices depicted in Figure
2. The matrix and point-wise multiplication in equation 3 is
applied per each feature and head dimension, respectively.

In Figure 2, we highlight variants of a 2D grid topology
matrix G preserving different symmetries, where same col-
ors represent a shared weight. For example, when using
horizontal in 2a, vertices and edges of the same color are
transformed into each other, creating a symmetry. Other
transformations do not produce this effect. Now, we define
G formally. For more technical details, see Appendix A. As-
sume that the distances are measured w.r.t. a specific vertex,
e.g. the center one in Figure 2, and edges can be viewed as
vectors. Then, pick G 2 RP⇥P such that a shared weight is
present in G:

• 2(a). When horizontal component of edges have the same
magnitude (Horizontal flip-preserving)

• 2(b). When the magnitude of the edges is same (Horizon-
tal and vertical flip-preserving)

• 2(c). When the distance between vertices is consistent.
(Rotation preserving)

3
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where

2. 色彩に不変な特徴抽出を可能とする構造を有したニューラルネットを用いた深層
強化学習モデルの提案 [2]

複数の強化学習ベンチマーク
におけるタスクにおいて高い
汎化性能を実証
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Figure 3: Architecture diagram of CiL for N = 1, i.e. no frame stacking.

For simplicity, let us discuss the single frame case first i.e. N = 1 for which the core functionality of the CiL
layer is given by

CiL : S ‘æ S W V (7)

where V is computed by the SVD of S, and W is a 3x3 matrix of trainable weights.3 The choice of the latter
results in the following categories:

• Category I : W is the identity matrix i.e without any trainable parameters, equation 7 is invariant
under general orthogonal transformations.

• Category II : For W œ SO3, i.e. in the general rotations group equation 7 is invariant under a
continuous one-parameter family of color transformations. For a given element in SO3 corresponds
to a rotation in three-dimensional color space and the layer is symmetric w.r.t. any other oration
along the same axis. The specific axis is chosen by setting the three Euler angles i.e. independent
parameters in W.

• Category III : For W a symmetric (real) 3 ◊ 3 matrix , equation 7 is invariant under a set of 4 (or
8) specific color transformations which are chosen by setting the parameters in W.

For a visualisation see Figure 2. For multiple frames i.e. N > 1 we need to take into account the time-series
nature according to equation 4.

CiL-Stack : SÕ, S ‘æ SÕ
·i T·· Õ· ÕÕ Wij V (S)jk· Õ· ÕÕ (8)

where for notional simplicity we split SÕ a color and stack dimension, and we have used Einstein summation
convention with i, j, k = 1, . . . , 3, and V (S) is computed via the SVD. We introduce trainable weights T which
are unconstrained an break the time-reversal symmetry of the expression equation 8; ·, · Õ, · ÕÕ = 1, . . . , N ≠ 1.

3
As for color-channels V and Vr are mostly identical we use them synonymously from here one.

5

CiL層の変換
SVD/DMDにより計算する直交行列
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Figure 4: Comparison of symmetries which aid learning (a) and (b) contrasted to those impeding the ability to learn
crucial features (c) and (d).

(a) Modified Lavacrossing, River (blue) are safe passage

through Lava stream (orange). (b) Training rewards, averaged over 4 random seeds.

Figure 5: Modified lava-crossing environment overview and empirical evaluation of CiL. Comparison of CiL to
Color-jitter and Random-conv data augmentation, the latter are detrimental for learning.

In Figure 3, the di�erent patch colors are for illustration only. The patches are not independent; the same
color invariance is learned for each feature across all patches, as CiL’s weights are shared among them. One
might wonder if patch-wise color augmentation could yield similar results to CiL. However, empirical tests on
Minigrid show that patch-wise augmentations, like global color augmentations, also fail to learn e�ectively.
Additionally, to achieve the same invariance properties as CiL, the model would require an impractical number
of patch-wise augmentations, namely: (#local color augmentations)#patches.

4 Empirical evaluation

4.1 Modified Minigird Lavacrossing to Test Color-sensitivity & Generalisation

The LavaCrossing environment, a standard in the MiniGrid toolkit Chevalier-Boisvert et al. (2019), requires
agents to navigate to a goal (green square) without falling into lava (orange squares). We modify the
environment by adding:

1. a safe river (water) to the environment which constitutes the only safe pathway through the lava
stream, see Figure (5a). Thus the agent must learn to take a "swim" in the river which is a color
sensitive choice as the lava needs to be avoided.

2. optionally to point (1) we introduce berry-fields and crop-fields see Figure (6) upon collecting them
the agent receives a additional rewards.

Thus depending on the colors blue and orange of river vs. lava (purple and green of berries and crops) see
Figure (6) opposing actions need to be taken by the agent to successfully reach the green goal. In other
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既存の深層強化
学習のNN機構へ
の追加で, 画像の
DRLタスクにおける
汎化性能の大幅
な向上が可能であ
ることを確認

GSAを用いたSymmetry-invariant 
Transformer (SiT) 機構

のパターンの選択に依存して, 特定の変換等に
対して不変な特徴のみが抽出される
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TABLE I
PERFORMANCE COMPARISON ON THE CARLA DATASET. THE UPPER AND

LOWER ROWS INDICATE THE BASELINES AND PROPOSED
METHODS, RESPECTIVELY

than other baselines. Totally, our full model and the variant
without amortized variational inference (TG-CRN) show the
best performances, suggesting that the necessity of complex
modeling for long-term prediction using this dataset would
be smaller than that using the following datasets. In our
four models, we found that on this dataset the combination
of theory-based computation and GNN worked well in the
covariate prediction, but did not in the outcome prediction.
Example results of our method are shown in Fig. 5, which
can interpret the results. Our method (TGV-CRN) shows
better counterfactual prediction with intervention than the
baseline (GCRN+X). On average, the outcome values with
the intervention compared to the absence of the intervention
(i.e., ITE) were 0.005±0.000 (km) in our full model, →0.021±

0.000 in the baseline (GCRN+X), and 0.013 ± 0.001 in the
ground truth. As Fig. 5 shows, the baseline did not model the
intervention effects. We expect that this method can be applied
to the effect of human intervention in Level 3 autonomous
vehicle simulations, which need human intervention. This
approach can examine the effect of autonomous control in
Level 4 or 5 autonomous vehicle simulations (without human
intervention) in a case when human intervention is necessary
in Level 3.

2) Biological Multiagent Simulation: Here, we validated
our methods on the Boid model, which contains the movement
trajectories of 20 agents. The Boid model (originally, [75]) is a
rule-based model to generate generic simulated flocking agents
and we used a unit-vector-based (rule-based) model [10] (for
details, see Appendix D). In this article, we intervene in the
agents’ recognition to generate torus (circle) behaviors from
the swarm (random) behaviors. The outcome is defined as
the mean angular momentum of individuals about the center
of the group (assuming the mass of each agent m = 1). That
is, the treatment effect of the change in the recognition is esti-
mated as the difference in the future mean angular momentum
between simulations with and without the interventions.

In this model, 20 agents are described by a 2-D vector with
a 1 m/s constant velocity in a 15 ↑ 15 m boundary square.
At each time stamp, a member will change direction according
to the positions of all other members based on three zones. The
first is the repulsion zone with radius rr = 0.5 m, in which
individuals within each other’s repulsion zone try to avoid
each other by swimming in opposite directions. The second
is the orientation zone, in which individuals try to move in
the same direction; here we set radius ro = 1 to generate
swarming behaviors before the intervention. To generate torus

Fig. 5. Example CARLA results using our method. Visualization of
covariates (top) and outcome time series (middle row and bottom) in ground
truth without intervention (left), counterfactual intervention using our model
(middle column), and the baseline (right). The middle row subfigures are
enlarged views of the bottom ones from 20 s. An ego car (red square) and
obstacles (black) are shown in the upper plots [see also Fig. 1(a)] at the
intervention time, which is the solid line in the lower plots. The unfilled
circle is the start of the long-term prediction (dashed line in the lower plots).
The ego-car moves from right to left and stops because of the obstacles. The
videos are given on the above GitHub page.

behaviors, we change ro = 4, which is the intervention in this
study. The third is the attractive zone (radius ra = 7.5 m),
in which agents move toward each other and tend to cluster.

To simulate the treatment assignments, we generate factual
20 800 samples (20 000 training, 400 validation, and 400 test
datasets). We set T = 14 and Tb = 9 and randomly
pick the intervention point during the intervention period
Ti = 9, . . . , 13. The outcome is defined as the mean angular
momentum among individuals at time t +1. We also created a
counterfactual dataset only in the test dataset. Here, we created
all combinations of treatment points during the intervention
period Ti . As the local covariates xl

t , we used the position,
velocity, and directional change of all agents. As the global
covariates xg

t , we used the current mean angular momentum.
The theory-based function f x

theory mathematically computed
x̂ t+1 using the direction change d at the next step, maximum
turn angle ω as body constraints (for d and ω, see also
Appendix D), and attraction rule when agents are far from
the center of the group. In addition, we added the orientation
rule when agents are in the orientation zone and not in the
repulsion zone in f x

theory. f y
theory was replaced with a MLP such

that ŷt+1 = MLPy([zl
t , xg

t , at ]).
The results are shown in Table II left. In addition to the four

indices in the CARLA experiment, we investigated the estima-
tion error of the best intervention timing | arg maxt ↓(ŷ(i,t ↓)

T +1) →

arg maxt ↓(y(i,t ↓)
T +1 )|. The results indicate that our model and its

variants with theory-based computation show better prediction
performances in covariates and the best intervention timing
than all of the baselines. However, the outcome prediction
errors in our models were worse than the causal inference
baselines (DSW, GCRN, and GCFN+X ), which may lead to
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Fig. 3. Illustration of TGV-CRN. (a) TGV-CRN aims to estimate ITE based on the long-term prediction of multiagent covariates and outcomes while
visualizing the long-term future covariate prediction. TGV-CRN leverages GVRNN to represent local agent interactions and theory-based functions for
covariate and outcome prediction, which can confirm under what circumstances the intervention is effective. Specifically, (b) training and inference processes
of the GNN encoder, prior, and decoder are illustrated. At each time stamp, the model takes the current covariates and treatment assignments as input to
learn representations of the hidden confounders via GRNNs and GNN encoders. Then, via theory-based computations, the GNN decoders, and MLPs, the
model predicts time-varying covariates, a potential outcome, and a treatment. We also use the GRL before the treatment classifier to ensure the confounder
representation distribution of the treated and that of the controlled are similar at the group level.

lower-bound (ELBO)

LVRNN

= Eqω(z→T |x→T )

[
T∑

t=1

log pε (xt | z→T , x<t )

↑DKL(qω(zt | x→T , z<t )||pε (zt | x<t , z<t ))

]

(2)

where zt is a stochastic latent variable of VAE, and pε (xt |

z→t , x<t ), qω(zt | x→t , z<t ), and pε (zt | x<t , z<t ) are generative
model, the approximate posterior or inference model, and the
prior model, respectively. The first term is the reconstruction
term. The second term is the Kullback–Leibler (KL) diver-
gence between the approximate posterior and the prior.

2) GNN: We then overview a GNN based on [16]. Let
vk be a feature vector for each node k of K agents. Next,
a feature vector for each edge e(k, j) is computed based on
the nodes to which it is connected. The edge feature vectors
are sent as “messages” to each of the connected nodes to
compute their new output state ok . Formally, a single round
of message-passing operations of a graph net is characterized
below

v ↓ e : e(k, j) = fe
(
[vk, v j ]

)
(3)

e ↓ v : oi = fv




∑

j↔N (k)

e(k, j)



 (4)

where N (k) is the set of neighbors of node k and fe and
fv are neural networks. In summary, a GNN takes in feature
vectors v1:K and outputs a vector for each node o1:K , that is,
o1:K = GNN(v1:K ). The operations of the GNN satisfy the
permutation equivariance property as the edge construction is
symmetric between pairs of nodes and the summation operator
ignores the ordering of the edges [25].

III. PROPOSED METHOD

Here, we describe our TGV-CRN method for ITE estimation
in multiagent observational data. The overall framework is

illustrated in Fig. 3(a). We aim to combine predictions of
outcome and covariates using data-driven and theory-based
approaches while balancing the representations of treated
and control groups to reduce the confounding bias. To this
end, we first introduce the representation learning of hidden
confounders with balancing by mapping the current multiagent
observational data and historical information into the represen-
tation space. Next, we describe the prediction methods of the
time-varying covariates, a potential outcome, and the treatment
using the learned representations. Finally, we describe the loss
function.

A. Representation Learning of Confounders

Here, as a main approach in Fig. 3(a), we extend a
GVRNN [13] for local multiagent locations xl

t (i.e., specific for
each agent) with theory-based computation. As its variant (e.g.,
used for the ablation study), a pure data-driven model com-
bining GVRNN and VRNN [15] for global variables xg

t (i.e.,
common for all agents) is also considered. Since the global
variables do not usually have the graph structure, VRNN
without GNN is suitable. Here, we describe the representation
learning of hidden confounders.

1) GVRNN: We first describe Graph VRNN (GVRNN)
[13] to obtain the representation from multiagent locations,
which models the interactions between them at each step
using GNNs. Let xl

→T = {xl
1, . . . , xl

T } denote a sequence of
covariates (here, we consider multiagent locations). In this
article, GVRNN’s update equations are as follows:

pε

(
zl

t |x
l
→t , zl

<t
)

=

∏

k

N

(
zl

t,k |µ
pri
t,k,

(
ϑ

pri
t,k

)2
)

(5)

qω

(
zl

t |x
l
→t+1, zl

<t
)

=

∏

k

N

(
zl

t,k |µ
enc
t,k ,

(
ϑ enc

t,k
)2

)
(6)

pε

(
xl

t+1|z
l
→t , xl

→t
)

=

∏

k

N

(
zl

t,k |µ
dec
t,k ,

(
ϑ dec

t,k
)2

)
(7)

hl
t+1,k = f l

RNN
(
xl

t+1,k, zl
t,k, hl

t,k
)

(8)

where hl
t and zl

t are deterministic and stochastic latent vari-
ables, N (·|µ, ϑ 2) denotes a multivariate normal distribution
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動的なマルチエージェント系において, 反実仮想的な介入の動的な効果を推定する
ための, 再起的なニューラルネットワーク・モデルを提案

個別の介入効果を予測する
ための提案モデル (TGV-CRN)
の全体像

自動運転ベンチマーク (CARLA) 
における適用例.
Ground Truth (左), 提案手法に
よる結果 (中), 既存の代表的手
法による結果 (右)


