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Mechanistic Understanding of GenAl

Vision and Social Impact

The adoption of GenAl has opened many new challenges.
Mechanistic understanding of GenAl is needed to ensure
safety, fairness, and trustworthiness.

Our vision is to achieve this understanding by analyzing
models at three levels of granularity:

- Neuronal: What is the function of individual neurons?
- Representational: What information do hidden states
encode? How does the model use this information?

- Algorithmic: What algorithms and reasoning strategies
do models use to generate answers? How are they

Implemented in which model components?

Neuron-level Analysis

NAACL 2025
Repetition Neurons: How Do Language Models Produce Repetitions?
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sometimes undesirable aspect of text o f

generation. How LMs perform repetition is not
understood on a mechanistic level so far.
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Contribution: Viewing repetition as a “skill”, we
devise a method for finding neurons strongly
associated with this skill. We then show that
repetition can be promoted or suppressed by
activating and deactivating these “repetition
neurons”.
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Understanding the Internal Representations of LLMs

ACL 2024
Monotonic Representation of Numeric Properties in Language Models

Motivation: Want to understand if/how numeric properties (birth year, elevation,
population, etc.) are encoded in LMs

Contribution: Developed a method for probing and modifying LM representations.
Found that numeric properties are encoded in low-dimensional subspaces in a easily-
interpretable, monotonic fashion.
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EMNLP 2024
Representational Analysis of Binding in Language Models

Motivation: Analyze if/how LMs perform binding.
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Binding is a basic operation in language ; } | |
understanding by which representations of entities - P
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that stand in a relation, e.g., “toy” and “box” in “the

toy is in the box”, are combined. e

- .
Contribution: Identified a subspace in which entities ..,
are represented according to their ordering. Causal ® * | ,ﬁ*“

interventions via activation patching allows
controlling the LM’s binding behavior, suggesting
that this subspace is an important part of the
mechanism by which the model performs binding.

Dissecting the Reasoning Process of LLMs and Vision Models

Think-to-Talk or Talk-to-Think?
When LLMs Come Up with an Answer in Multi-Step Reasoning

Motivation: Chain-of-thought is a prompting technique by which one asks LMs
not only to generate an answer, but also a chain of reasoning steps. However, the
degree to which this chain reflects the model’s actual reasoning is unclear.

Contribution: By conducting systematic probing, we reveal a complex relationship
between internal reasoning and expressed reasoning steps.
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The Geometry of Numerical Reasoning
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if/how these representations are used in the
reasoning process of language models.

Contribution: Found LMs compare numeric

goe - commlmmoa properties in low-dimensional linear subspaces
of activation space. By intervening on

02 ' representations in these subspaces, one can

[ B A SO DN BN control the outcome of numeric comparisons.
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EMNLP 2024

First Heuristic Then Rational:
Dynamic Use of Heuristics in Language Model Reasoning

Motivation: LMs sometimes appear to perform complex multi-step reasoning but
also can make simple mistakes. We analyze why such reasoning failures happen.

Contribution: We show that use of simple heuristic, such as lexical overlap, are
more prevalent in the earlier stages of reasoning, while precise reasoning is more
common towards the end of the reasoning chain.

p1: Peggy has 5 apples.
, P2 has 2 more apples than Peggy has.
Goal ‘ D3 has 3 less apples than Peggy has.

' ' ) p4: Judy has 2 more apples than has. J=?=? ey ! =7 ?
P d=3 d=2 d=1
- |
, " / : Expected 3-step reasoning ( ): J=2 e o
= : Peggy has 5 apples. (stat d=2 d=1 d=0
t=1 z1: Peggy has 5 apples. (state p,) — O O ——
Start S t=2 Zy: has 2+5=7 apples. (paraphrase of p)
(\\(\9 S‘.ep ¢ =3 z3: Judy has 2+7=9 apples. (paraphrase of p,) P: Peggy, \W: Walter, J\: Judy’s mother, J: Judy

Reaso :stated facts  p, : statement/paraphrase

z =[2y,23,23] h* = [p1,p2,pa] EP* (state) z.; » of premise py

q: How many apples does Judy have? i P Ps
Let’s think step-by-step. { p=5

ICLR 2025

Sketch2Diagram: Generating Vector Diagrams from Hand-Drawn Sketches

Motivation: Creating and understanding diagrams and vector graphics involves
abstract reasoning about discrete. This task is challenging for current models.

Contribution: To enable progress on this complex task, we introduce a dataset
consisting of hand-drawn sketches and vector diagrams. In addition to evaluating
large models, we develop augmentation methods and show that a small model
trained on our dataset can outperform GPT-4o.
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