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Brief self-introduction

▶ Professor at Nagoya Institute of Technology

▶ Team leader of data-driven biomedical science team at RIKEN AIP

▶ Mission: develop AI and ML methods for data-driven science and their
applications to biology, medicine, and material science
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AI and ML in practice

▶ ELSI (Ethical, Legal and Social Issues)

▶ Fairness
▶ SDG

▶ Interpretability

▶ Visualization
▶ Rule Extraction

▶ Reliability

▶ Robustness
▶ Statistical Significance
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Reliability in AI

▶ Robustness: the complexity of AI increases the risk that a small change in the
data leads to a big change in the result.

Goodfellow et al. (ICLR2015) Fig.1
panda gibborn

▶ Statistical significance: The flexibility of AI increases the risk of finding false
positive (FP) results (which seems meaningful but is just an artifact).

An example of medical image segmentation

original image attention (object) region background region

(Traditional) Naive p-value = 0.000 (statistically significant)

Ichiro Takeuchi, RIKEN AIP 5/44



Uncertainty quantification

▶ For evaluating statistical reliability of the knowledge obtained by AI, uncertainty
quantification of the knowledge is needed.

AI
AlgorithmData Knowledge

▶ Frequentist approach (sampling distribution)

▶ Exact inference (deriving exact sampling distribution)
▶ Randomized inference
▶ Asymptotic inference

▶ Bayesian approach (posterior distribution)

▶ Exact Bayesian inference
▶ MCMC
▶ Variational inference

▶ Uncertainty quantification approaches in deep neural network (DNN)

▶ Dropout
▶ Ensemble learning
▶ Bayesian NN
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Probabilistic data generation model

▶ (Frequentist) statistical inference framework (parallel world interpretation)

Observed
Data AI Hypothesis BGenerator
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Probabilistic data generation model

▶ (Frequentist) statistical inference framework (parallel world interpretation)

Data2 Algorithm Hypothesis B

Data3 Algorithm Hypothesis D

Observed
Data Algorithm Hypothesis BGenerator

Data4 Algorithm Hypothesis C

Data5 Algorithm Hypothesis A

Data1 Algorithm Hypothesis A

Data6 Algorithm Hypothesis B
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Knowledge-driven science and data-driven science

(Traditional）Knowledge-driven science

Hypothesis

Research
target

Knowledge-
driven

hypothesis

Expert
knowledge

Traditional
hypothesis

testing
Experimental

data

Big data Data-driven
hypothesis

Research
target

Algorithm

Hypothesis

Selective
inference

Data-driven science
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Outline

▶ Part 1: Hypothesis selection bias and multiple comparison

▶ Part 2: Conditional Selective Inference (SI)

▶ Part 3: Conditional SI for deep neural network (DNN)
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Part 1: Hypothesis Selection Bias and Multiple Comparison

Ichiro Takeuchi, RIKEN AIP 10/44



Problem 1: medical image segmentation

▶ Goal: Identify the attention (object) region in a medical image by segmentation

original image object background

▶ An image is represented as an n-dimensional random vector of pixel values
X ∈ Rn as

X︸︷︷︸
(random) vector

= M︸︷︷︸
true vector

+ ε︸︷︷︸
noise vector

, ε ∼ N(0,Σ)︸ ︷︷ ︸
Normally-distributed noise

▶ Segmentation algorithm A

A︸︷︷︸
algorithm

: X︸︷︷︸
(random) image

7→ { OX︸︷︷︸
pixels in object

, BX︸︷︷︸
pixels in background

}
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Data-driven knowledge discovery

▶ Data-driven hypothesis

Data AI HypothesisGenerator

vs
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Statistical hypothesis testing
▶ Statistical hypothesis testing

▶ Null hypothesis

H0 :
1

|OX |
∑

i∈OX

Mi︸ ︷︷ ︸
mean pixel value in object

=
1

|BX |
∑

i∈BX

Mi︸ ︷︷ ︸
mean pixel value in background

▶ Alternative hypothesis

H1 :
1

|OX |
∑

i∈OX

Mi︸ ︷︷ ︸
mean pixel value in object

6=
1

|BX |
∑

i∈BX

Mi︸ ︷︷ ︸
mean pixel value in background

▶ Test statistic: Difference of mean pixel values between object and background
regions

∆X :=
1

|OX |
∑

i∈OX

Xi −
1

|BX |
∑

i∈BX

Xi

▶ Statistical significance (two-sided p-value)

p = Pr

 |∆X |︸ ︷︷ ︸
random variable

≥ |∆x|︸ ︷︷ ︸
observation


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Knowledge-driven vs. data-driven hypotheses
▶ Knowledge-driven hypothesis: object/background regions do not depend on the

data ⇒ (traditional) z-test or t-test

1

|O|
∑
i∈O

Mi︸ ︷︷ ︸
fixed mean pixel value in object

= or 6=
1

|B|
∑
i∈B

Mi︸ ︷︷ ︸
fixed mean pixel value in background

original image object background

▶ Data-driven hypothesis: object/background regions are determined by the data
⇒ data/algorithm dependent

1

|OX |
∑

i∈OX

Mi︸ ︷︷ ︸
selected mean pixel value in object

= or 6=
1

|BX |
∑

i∈BX

Mi︸ ︷︷ ︸
selected mean pixel value in background

original image object background
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Multiple comparison, hypothesis selection, and selection bias

▶ The data-driven hypothesis is interpreted as the result of multiple comparison
with all possible 2#pixels segmentation results.

vs

vs

vs

vs

vs

Hypothesis B

Hypothesis C

Hypothesis E

Hypothesis A

Hypothesis D

▶ Correction of the selection bias is indispensable in multiple comparison.
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Problem 2: feature selection in linear models

▶ Goal: select a subset of 10,000 genes that are useful for predicting drug effects

▶ High-dimensional data and feature selection

GF2

GF10000

GF1

Feature selection
algorithm GF5

GF7

GF2

▶ Linear model with the selected features by least-square method

ŷi = β̂2xi2 + β̂5xi5 + β̂7xi7,

where  β̂2

β̂5

β̂7

 = argmin
β2,β5,β7

n∑
i=1

(yi − (β2xi2 + β5xi5 + β7xi7))
2
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Problem 2: feature selection in linear models (problem formulation)

▶ Data (n = 50, d = 10000 in the example）
X ∈ Rn×d,Y ∈ Rn

▶ Probabilistic model

Y︸︷︷︸
drug effect

= µ(X)︸ ︷︷ ︸
true drug effect

+ ε︸︷︷︸
noise

, ε ∼ N (0,Σ)︸ ︷︷ ︸
Normally-distributed noise

▶ Feature selection algorithm A

A : Y 7→ MY ,

where MY is the set of selected features (My = {2, 5, 7} in the example)

▶ Linear model with the selected features by least-square method

β̂MY
= argmin

β∈R|MY |
‖Y −X⊤

MY
β‖2 = (X⊤

MY
XMY

)−1X⊤
MY

Y
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AI and data-driven hypotheses

▶ Data-driven hypothesis

Observed
Data AI knowledgeGenerator
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Statistical hypothesis testing
▶ Statistical hypothesis testing

▶ Population least-square solution

βMY
= (X⊤

MY
XMY

)−1X⊤
MY

µ(X)︸ ︷︷ ︸
true drug effect

▶ Null hypothesis

H0 : βMY ,j︸ ︷︷ ︸
effect of the selected feature j

= 0

▶ Alternative hypothesis

H1 : βMY ,j︸ ︷︷ ︸
effect of the selected feature j

6= 0

▶ Test-statistic

β̂MY ,j = (X⊤
MY

XMY
)−1X⊤

MY
Y︸︷︷︸

observed drug effect

▶ Statistical significance (two-sided p-value)

p = Pr

 |β̂MY ,j |︸ ︷︷ ︸
random var.

≥ |β̂My ,j |︸ ︷︷ ︸
observation


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Knowledge-driven hypotheses and data-driven hypotheses

▶ Knowledge-driven hypothesis: the set of features are selected without looking at
the data ⇒ (traditional) z-test or t-test

βM,j︸ ︷︷ ︸
effect of the selected feature j for the fixed model

= or 6= 0

▶ Data-driven hypothesis: the set of features are selected by the data ⇒
data/algorithm dependent

βMY ,j︸ ︷︷ ︸
effect of the selected feature j for the selected model

= or 6= 0
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Multiple comparison, hypothesis selection, and selection bias

▶ This data-driven hypothesis is interpreted as the result of multiple comparison
with 2#features×#selected feature hypotheses.

Hypothesis B

Hypothesis C

Hypothesis E

Hypothesis A

Hypothesis D

▶ Correction of the selection bias is indispensable in multiple comparison.
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Multiple comparison
▶ In the context of traditional multiple hypothesis testing, only a handful of tests

are considered.

****

**

condition A condition B condition C

▶ In the context of genetic data analysis (2000∼), large-scale multiple comparison
with tens of thousands of hypotheses were considered.

▶ The number of all possible hypotheses that AI/ML can produce is much more
than the existing methods can handle.
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Three approaches for multiple comparison correction

▶ Family-wise error rate (FWER) control: controlling the probability of finding a
false positive (FP) < α (e.g., 0.05)

▶ False discover rate (FDR): controlling the expected proportion of discoveries
that are false < α (e.g., 0.05)

▶ Conditional selective inference (SI): controlling the probability of finding a FP
conditional on the hypothesis selection event < α (e.g., 0.05)

Ichiro Takeuchi, RIKEN AIP 23/44



Summary of part 1

▶ Knowledge obtained by AI/ML algorithm is considered as data-driven
hypotheses.

▶ Statistical reliability of data-driven hypotheses cannot be properly evaluated with
traditional statistical inference due to the selection bias.

▶ This problem can be interpreted as a huge-scale multiple comparison problem
where the one is selected from all possible hypotheses that AI/ML can produce.
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Part 2: Conditional Selective Inference (SI)
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Basic idea of conditional SI

▶ The key idea of conditional SI is to consider only the cases (parallel worlds)
where the same hypothesis is selected.

Data2 Algorithm Hypothesis B

Data3 Algorithm Hypothesis D

Observed
Data Algorithm Hypothesis BGenerator

Data4 Algorithm Hypothesis C

Data5 Algorithm Hypothesis A

Data1 Algorithm Hypothesis A

Data6 Algorithm Hypothesis B

▶ Intuitively, by considering only the randomness where the same hypothesis is
selected, the hypothesis selection bias disappears.
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Conditional SI for medical image segmentation problem

▶ Ordinary statistical significance (p-value)

p = Pr

 |∆X |︸ ︷︷ ︸
random var.

≥ |∆x|︸ ︷︷ ︸
observation


▶ Conditional statistical significance (selective p-value)

p = Pr

 |∆X |︸ ︷︷ ︸
random var.

≥ |∆x|︸ ︷︷ ︸
observation

∣∣∣∣∣ {OX ,BX} = {Ox,Bx}︸ ︷︷ ︸
the same object/background are selected


▶ The main challenge of conditional SI is to characterize the selection event and

compute the conditional probability.
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A simple example of conditional SI for image segmentation

▶ A simple segmentation algorithm based on a threshold θ

OX = {Xi ≥ θ},
BX = {Xi < θ}

▶ Selection event

Xi ≥ θ, i ∈ Ox,

Xi < θ, i ∈ Bx

▶ Selective p-value

p = Pr

 |∆X |︸ ︷︷ ︸
random var.

≥ |∆x|︸ ︷︷ ︸
observation

∣∣∣∣∣ {OX ,BX} = {Ox,Bx}︸ ︷︷ ︸
the same object/background are selected



= Pr

 |∆X |︸ ︷︷ ︸
random var.

≥ |∆x|︸ ︷︷ ︸
observation

∣∣∣∣∣ Xi ≥ θ, i ∈ Ox, Xi < θ, i ∈ Bx︸ ︷︷ ︸
the same object/background are selected


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Conditional SI for feature selection

▶ Naive p-value:

p = Pr

 |β̂MY ,j |︸ ︷︷ ︸
random var.

≥ |β̂My ,j |︸ ︷︷ ︸
observation


▶ Selective p-value:

p = Pr

 |β̂MY ,j |︸ ︷︷ ︸
random var.

≥ |β̂My ,j |︸ ︷︷ ︸
observation

∣∣∣∣∣ MY = My︸ ︷︷ ︸
the same set of features are selected


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A simple example of conditional SI for feature selection
▶ Marginal screening: select k features whose correlation between Y ∈ Rn and

xj ∈ Rn are large:

x⊤
(1)Y ≥ x⊤

(2)Y ≥ x⊤
(3)Y︸ ︷︷ ︸

selected (when k = 3)

≥ x⊤
(4)Y ≥ x⊤

(5)Y ≥ . . . ≥ x⊤
(D)Y ,︸ ︷︷ ︸

not selected (when k = 3)

Note that the correlation is represented as an inner product when variables are
standardized.

▶ Hypothesis selection event

x(1)
⊤Y ≥ x(4)

⊤Y x(2)
⊤Y ≥ x(4)

⊤Y x(3)
⊤Y ≥ x(4)

⊤Y
...

...
...

x(1)
⊤Y ≥ x(D)

⊤Y x(2)
⊤Y ≥ x(D)

⊤Y x(3)
⊤Y ≥ x(D)

⊤Y ,

▶ Selective p-value

p = Pr

 |β̂MY ,j |︸ ︷︷ ︸
random var.

≥ |β̂My ,j |︸ ︷︷ ︸
observation

∣∣∣∣∣ MY = My︸ ︷︷ ︸
the same set of features are selected



= Pr

 |β̂MY ,j |︸ ︷︷ ︸
random var.

≥ |β̂My ,j |︸ ︷︷ ︸
observation

∣∣∣∣∣ {
x(ℓ)

⊤Y ≥ x(m)
⊤Y

}
(ℓ,m)∈{1,...,k}×{k+1,...,d}︸ ︷︷ ︸

the same set of features are selected


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Hypothesis selection event

Segmentation problem Feature selection problem

Hypothesis selection eventHypothesis selection event
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Polyhedral lemma (Lee+16)
▶ Conditional SI has been actively studied after the seminal work by (Lee+2016)

▶ Conditional SI for Lasso feature selection was studied in (Lee+2016)

▶ Brief summary of polyhedral lemma: If

1. the selection event is represented by a polyhedron (a set of linear
inequalities) in the data space, and

2. the test-statistic is linear function of the data,

then the exact selective p-values can be computed based on truncated Normal
distribution.

▶ By further conditioning on the sufficient statistic of the nuisance component, we
have the sampling distribution on a line in the data space truncated by a
polyhedron.
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Conditional SI for the selected features by Lasso (Lee+16)
▶ Consider Lasso is an algorithm to select a set of features and their signs

ALasso : Y 7→ {M, s},
where M is the set of selected features and s is the set of their signs.

▶ Test-statistic of the selected features

β̂MY ,j = (X⊤
MY

XMY
)−1X⊤

MY
Y = η⊤Y

▶ Selective p-value

p = Pr

|β̂MY ,j | ≥ |β̂My ,j |

∣∣∣∣∣ MY = My ,︸ ︷︷ ︸
features

sY = sy ,︸ ︷︷ ︸
signs

P⊥
η Y = P⊥

η y︸ ︷︷ ︸
nuisance component


▶ Selective p-values follow uniform distribution

PrH0
(p ≤ α | MY = My , sY = sy) = α ∀α ∈ (0, 1)

P−value

Fr
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nc
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00
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0
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Summary of part 2

▶ Conditional SI has been actively studied as a promising approach for hypothesis
selection bias correction.

▶ By polyhedral lemma, if the selection event is represented by a polyhedron, the
selective p-values can be computed.

▶ Selection event depends on each algorithm — it is challenging to apply
conditional SI to complicated algorithms such as DNN.
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Part 3: Conditional SI for DNN-driven Hypotheses
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Image segmentation by DNN
▶ U-net is one of the most-commonly used CNN for image segmentation task:

Basic structure of U-Net (Wikipedia)

U-net is fully convolutional network and has U-shape.

▶ Basic components of CNN

threshold

conv + 
ReLU max pooling upsample

conv + 
thresholding

▶ CNN is a complicated function as a whole, but it consists of several basic simple
components.
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Selection event for DNN

▶ CNN-based segmentation algorithm

ACNN : X 7→ {OX ,BX}

▶ Conditional SI for CNN-based segmentation

p = Pr

|∆X | ≥ |∆x|

∣∣∣∣∣ ACNN(X) = ACNN(x)︸ ︷︷ ︸
the same CNN outputs are selected

, P⊥
η X = P⊥

η x︸ ︷︷ ︸
nuisance component


▶ Q. Can we characterize the complicated selection event of CNN?

{OX ,BX} = {Ox,Bx} ⇔ ACNN(X) = ACNN(x)

Unfortunately, the selection event cannot be represented as a polyhedron.
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Parametric programming approach

▶ The selection event of CNN segmentation algorithm is complicated:

▶ Our idea is to consider solving a sequence of segmentation problems for a
parametrized data in the direction of the test-statistic:

1. Consider multiple finer selection events with additional conditions;
2. Run the segmentation algorithm for each finer selection event on the line;
3. Identify the truncation region at which the same result is obtained;
4. Combine the probability mass of multiply truncated Normal distributions;
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Additional conditioning by finer events regarding basic components of CNN

▶ By additionally conditioning on finer selection events regarding the basic
components of CNN, the selection event is characterized as a union of polhedra.

Component Operations

Convolution linear
ReLU transfer function piecewise-linear

Max-pooling comparison
Upsampling linear
Thresholding comparison

threshold

conv + 
ReLU max pooling upsample

conv + 
thresholding
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A summary of the divide-and-conquer approach

▶ Parametric programming approach looks like:
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Examples of brain tumor image segmentation
▶ Positive cases (with true brain tumors)

naive p: 0.000︸ ︷︷ ︸
true pos.

selective p: 0.000︸ ︷︷ ︸
true pos.

naive p: 0.000︸ ︷︷ ︸
true pos.

selective p: 0.000︸ ︷︷ ︸
true pos.

▶ Negative cases (without true brain tumors)

naive p: 0.000︸ ︷︷ ︸
false pos.

selective p: 0.670︸ ︷︷ ︸
true neg.

naive p: 0.000︸ ︷︷ ︸
false pos.

selective p: 0.451︸ ︷︷ ︸
true neg.
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Summary

▶ Knowledge obtained by AI is a data-driven hypothesis, which cannot be properly
evaluated by traditional statistical inference.

▶ Conditional SI is a promising approach for exact inference for data-driven
hypotheses.

▶ The main technical challenge of conditional SI is how to characterize the
selection event.

▶ Polyhedral lemma enables us to handle selection event represented as a
polyhedron.

▶ Our parametric programming approach can be used for more complicate
selection event such as DNN-driven hypotheses.

▶ We applied this parametric programming approach to several other problems
such change point detection, outlier detection, clustering etc.
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