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RIKEN Center for
Advanced Intelligence Project (AIP)

 10-year national project in Japan (2016-2025):
 Develop next-generation AI technology

(learning and optimization theory, etc.)
 Accelerate scientific research

(material, cancer, stem cells, genomics, etc.)
 Solve socially critical problems

(natural disaster, elderly healthcare, etc.)
 Study of ethical, legal and social issues of AI

(ethical guideline, privacy protection, etc.) 
 Human resource development

(150+ researchers, 200+ students,
150+ interns, 300+ visiting scientists,
40+ industry projects) 
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Imperfect Information Learning Team:

Develop novel ML theories and algorithms that 
enable accurate learning from limited information.



Imperfect Information Learning Team
Members:

 Gang Niu (Research Scientist): Learning theory
 Voot Tangkaratt (Postdoc): Reinforcement learning
 Shuo Chen (Postdoc): Metric learning
 Jingfeng Zhang (Postdoc): Adversarial learning
 Jiaqi Lyu (Postdoc): Weakly supervised learning
 Many great Visiting Scientists,

Junior Research Associates, Part-Timers,
and Interns over the world!
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Today’s Topic:
Robust Machine Learning

 In real-world applications, it becomes 
increasingly important to consider
robustness against various factors:
 Data bias: changing environments, privacy.
 Insufficient information: weak supervision.
 Label noise: human error, sensor error.
 Attack: adversarial noise, distribution shift.

 In this talk, I will give an overview of our 
recent advances in robust machine learning.
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http://www.ms.k.u-tokyo.ac.jp/sugi/publications.html
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Transfer Learning
 Training and test data often have

different distributions, due to
 changing environments,
 sample selection bias (privacy).

 Transfer learning (domain adaptation):
 Train a test-domain predictor using

training data from different domains.
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Sugiyama & Kawanabe,
Machine Learning

in Non-Stationary Environments,
MIT Press, 2012

Quiñonero-Candela, Sugiyama, 
Schwaighofe & Lawrence (Eds.),
Dataset Shift in Machine Learning,
MIT Press, 2009.

(Edited volume from NIPS2006 Workshop 
on Learning When Test and Training Inputs 
Have Different Distributions)



Problem Setup
Given: 

 Training data 

Goal: 
 Train a predictor                   

that works well in the test domain
(with some additional data from the test domain).

 Challenge: 
 Overcome changing distributions!
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Various Scenarios
 Full-distribution shift:
 Covariate shift:
 Class-prior/target shift:
 Output noise:
 Class-conditional shift:
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9Regression under Covariate Shift

Training

Test

Function & data

Target
function

Covariate shift:
 Training and test input distributions are different:

 But the output-given-input distribution remains unchanged:

Input densities

Shimodaira (JSPI2000)



10Empirical Risk Minimization (ERM)

Generally, ERM is consistent:
 Learned function converges

to the optimal solution
when                    .

 However, covariate shift
makes ERM inconsistent:



11Importance-Weighted ERM (IWERM)

 IWERM is consistent
even under covariate shift.

 How can we know the importance weight?

Importance



Importance Weight Estimation

 Estimating the density ratio is substantially
easier than estimating both the densities!

 Various direct density-ratio
estimators were developed.
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Sugiyama, Suzuki & Kanamori,
Density Ratio Estimation

in Machine Learning  
(Cambridge University Press, 2012)

Knowing densities Knowing ratio

Vapnik’s principle:
When solving a problem of interest,

one should not solve a more general problem
as an intermediate step

Vapnik (Wiley, 1998)



Least-Squares Importance Fitting
(LSIF)

Given training and test input data:

Directly fit a model    to                          by LS:

 Empirical approximation:
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Kanamori et al. (JMLR2009)



From Two-Step Adaptation
to One-Step Adaptation

 The classical approaches are two steps:
1. Weight estimation (e.g., LSIF):

2. Weighted predictor training (e.g., IWERM):

Can we integrate these two steps?
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Joint Upper-Bound Minimization
 Suppose we are given

 Labeled training data:
 Unlabeled test data:

Goal: We want to minimize the test risk.

We use two losses .
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: evaluation loss

Tukey loss

Zhang et al. (ACML2020, SNCS2021)

: surrogate loss

For example:
 : 0/1,      : hinge or softmax

cross-entropy (classification)
 : Tukey,     : squared (regression)



Risk Upper-Bounding (cont.)
 For                              ,

the test risk is upper-bounded as

 In terms of this upper-bound minimization,
2-step (LSIF followed by IWERM) is not optimal:

 Let’s directly minimize the upper bound w.r.t. !
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 LSIF

 IWERM

Zhang et al. (ACML2020, SNCS2021)



Theoretical Analysis
Under some mild conditions, the test risk of

the empirical solution                                    
is upper-bounded as
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Practical Implementation 19

Importance weight
learning

Predictor
learning



Experimental Evaluation 20

Yamada et al. (NIPS2011, NeCo2013)

Shimodaira (JSPI2000)
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Dynamic Importance Weighting

Deep learning adopts stochastic optimization:

 Let’s learn 
 Importance weight
 predictor

dynamically in the mini-batch-wise manner.

22

Fang et al. (NeurIPS2020)

: Learning rate



Mini-Batch-Wise Loss Matching
 Suppose we are given

 (Large) labeled training data:
 (Small) labeled test data:

 For each mini-batch                                        , 
importance weights are estimated by
kernel mean matching for loss values:

 No covariate shift assumption is needed!
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Huang, et al. (NeurIPS2007)



Practical Implementation 24

Experimental Evaluation
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ML from Limited Data 
ML from big labeled data is successful.

 Speech, image, language, advertisement,…
 Estimation error of the boundary

decreases in order             .

However, there are various applications
where big labeled data is not available.
 Medicine, disaster, robots, brain, …
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Positive Negative

Boundary

: Number of labeled samples



Alternatives to Supervised Classification
 Unsupervised classification:

 No label is used.
 Essentially clustering.
 No guarantee for prediction.

 Semi-supervised classification:
 Additionally use a small amount of labeled data.
 Propagate labels along clusters.
 No guarantee for prediction.
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Weakly Supervised Learning
 Coping with labeling cost:
 Improve data collection (e.g., crowdsourcing)
 Use a simulator to generate pseudo data

(e.g., physics, chemistry, robotics, etc.)
 Use domain knowledge (e.g., engineering)
 Use cheap but weak data (e.g., unlabeled)
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Weakly supervised learning
High accuracy & low cost
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Positive-Unlabeled Classification 30

Given: Positive and unlabeled samples

Goal: Obtain a PN classifier

Unlabeled (mixture of
positives and negatives)

Positive

Example: Ad-click prediction
 Clicked ad: User likes it  P
 Unclicked ad: User dislikes it

or User likes it but doesn’t have
time to click it  U (=P or N)



PN Risk Decomposition
Risk of classifier    :

 Since we do not have N data in the PU setting,
the risk cannot be directly estimated.
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Risk for P data Risk for N data

: Class-prior probability
(assumed known; can be estimated)

Scott & Blanchard (AISTATS2009)
Blanchard et al. (JMLR2010)

du Plessis et al. (IEICE2014, MLJ2017)
Ramaswamy et al. (ICML2016)

Yao et al. (arXiv2020)

: loss function



PU Risk Estimation

 U-density is a mixture of P- and N-densities:

 This allows us to eliminate the N-density:
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du Plessis et al. (ICML2015)



PU Empirical Risk Minimization

 Replacing expectations by sample averages gives 
an empirical risk:

Optimal convergence rate is attained:

33

: # of P, U samples

Niu et al. (NIPS2016)



Theoretical Comparison with PN

 Estimation error bounds for PU and PN:

 Comparison: PU bound is smaller than PN if 

 PU can be better than PN, provided many PU data!
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Niu et al. (NIPS2016)

: # of P, N, U samples



Further Correction

 PU formulation:

 If                     ,                 .
 However, its PU empirical approximation can be negative 

due to “difference of approximations”.

 This problem is more critical for flexible models
such as deep neural networks.
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Risk for P data Risk for N data



Non-Negative PU Classification

We constrain the sample approximation term
to be non-negative through back-prop training:

 This risk estimator is biased. Is it really good?
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Stochastic gradient iterations

Er
ro

r

PU test

PN test

PU train

PN train

Overfitting

Empirical error
goes negative

Conv. net
Kiryo et al. (NIPS2017)



Theoretical Analysis

 is still consistent and its bias decreases 
exponentially:
 In practice, we can ignore the bias of            !

Mean-squared error of            is not more than
the original one:
 In practice,             is more reliable!

Risk of                      for linear models attains
the optimal convergence rate: 
 Learned function is still optimal.

37
Kiryo et al. (NIPS2017)

: # of P, U samples



Practical Implementation
for Deep Learning

Use mini-batch stochastic gradient optimization:
 If                 , perform gradient descent as usual.
 If                 , perform gradient ascent:
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For poor mini-batch data, 
 Step back the gradient to avoid 

converging to a poor local optimum
 and recompute the gradient

with a new mini-batch.



Experiments
With a large number of unlabeled data,

non-negative PU can even outperform PN!
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Plain PU test

PN test

Non-negative PU test

Plain PU train

PN train
Non-negative PU train

Stochastic gradient iterations

Er
ro

r

 Binary CIFAR-10:
Positive (airplane, 
automobile, ship, 
truck)
Negative (bird, 
cat, deer, dog, 
frog, horse)

 13-layer CNN 
with ReLU



Summary
Risk-rewriting: Rewrite the classification risk 

only in terms of weak data.
 Standard empirical risk minimization formulation.
 Optimal convergence guarantee.
 Compatible with any loss, regularization, model, 

and optimizer.
 Applicable to various weak data (shown next).

Non-negative risk correction: Utilize intrinsic
non-negativity to mitigate overfitting.
 Non-negativity of loss, convexity, etc.
 Applicable to various weak data.
 Applicable to noisy-label learning.
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Han et al. (ICML2020)

Lu et al.  (ICLR2019)
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Various Binary Weak Labels
 Various weakly supervised classification problems

can be solved by risk-rewriting systematically!
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95% 70%

5%

20%

Positive-confidence (Pconf)
(ex: purchase prediction)

Positive-Unlabeled (PU)
(ex: click prediction)

Unlabeled-Unlabeled (UU)
(learning from

different populations)

Similar-Dissimilar (SD)
(delicate information)

Bao et al. (ICML2018)
Shimada et al. (NeCo2021)

Dan et al. (ECMLPKDD2021)
Cao et al. (ICML2021)

Feng et al. (ICML2021)

du Plessis et  al.
(NIPS2014, ICML2015, MLJ2017)

Niu et al. (NIPS2016),
Kiryo et al. (NIPS2017)

Hsieh et al. (ICML2019)

Ishida et al. (NeurIPS2018)
Shinoda et al. (IJCAI2021)

Semi-Supervised (PU+PN)
(first theoretically 

guaranteed method)

Sakai et al. (ICML2017, ML2018)

du Plessis et al.,(TAAI2013)
Lu et al. (ICLR2019, AISTATS2020)
Charoenphakdee et al. (ICML2019)

Lei et al. (ICML2021)



Multiclass Methods
 Labeling in multi-class problems

is even more painful.

 Risk rewriting is still possible
in multi-class problems!

Multi-class weak-labels:
 Complementary labels: Specify a class

that a pattern does not belong to (“not 1”).

 Partial labels: Specify a subset of classes
that contains the correct one (“1 or 2”).

 Single-class confidence: One-class data with full confidence
(“1 with 60%, 2 with 30%, and 3 with 10%”) 
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Class 1
Class 2

BoundaryClass 3

Ishida et al. (NIPS2017, ICML2019), Chou et al. (ICML2020)

Feng et al. (ICML2020, NeurIPS2020), Lv et al. (ICML2020)

Cao et al. (arXiv2021)



Summary: Empirical Risk Minimization
Framework for Weakly Supervised Learning
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P, N, U, S, D, Pconf,
Nconf, Sconf, Dconf....

Comp, Partial, SCconf…
Different weak information

can be systematically
combined!

Sugiyama, Bao, Ishida, Lu, Sakai & Niu,
Machine Learning from Weak Supervision,
MIT Press, in Press.

Coming
soon
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Challenges in
Reliable Machine Learning

Reliability for expectable situations:
 Model the corruption process explicitly

and correct the solution.
 How to handle modeling error?

Reliability for unexpected situations:
 Consider worst-case robustness (“min-max”).
 How to make it less conservative?

 Include human support (“rejection”).
 How to handle real-time applications?

 Exploring somewhere in the middle
would be practically more useful:
 Use partial knowledge of the corruption process.
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Axes of ML Research

 Decomposing ML research into
conceptually orthogonal topics:
 Model
 Learning method
 Regularizer
 Optimizer
 …
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Linear Kernel Deep

Model

Additive

Supervised
Unsupervised

Weakly supervised

Learning
Method

Semi-supervised

Reinforcement

Theory Application

Transfer
Adversarial

Noise-robust



Technological Breakthroughs
 Classical convex learning methods

allow us to analyze the global solution.
 Since optimization in deep learning is complex,

stochastic gradient descent is used.

 Thanks to the “gradual learning” nature,
we can utilized intermediate learning results:
 Strengthening supervision for weakly supervised learning.
 Dynamic importance weighting for transfer learning.
 Dynamic noise transition estimation for noise-robust learning.
 Co-teaching for noise-robust learning.
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