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Overview of this presentation

• Optimization theory of deep learning
• SGD in neural tangent kernel regime

• Infinite dimensional gradient Langevin dynamics

• Particle gradient descent in mean field regime

• Optimization theory in double descent

• Its connection to generalization performance 
of deep learning.

3



Overparameterization

Wide neural network does not have spurious 
local minima. 
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• Two types of analysis
➢ Neural Tangent Kernel (NTK)

➢ Mean-field analysis

…

Narrow network

Wide network

Since the model complexity is 
increased, the initial solution is 
already close to the global optimal.

0

0

e.g., Venturi, Bandeira and Bruna (2019).



Two regimes

• Neural Tangent Kernel regime (lazy learning )

➢ 𝑎𝑗 = O(1/ 𝑀)

• Mean field regime

➢ 𝑎𝑗 = Ο(1/𝑀)
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Different scaling of initial solution yields 
different behavior. 

[Nitanda & Suzuki (2017), Chizat & Bach 
(2018), Mei, Montanari, & Nguyen (2018)]

[Jacot+ 2018][Du+ 2019][Arora+ 2019]
(Xavier initialization/He initialization)



Neural Tangent Kernel 6

Since the initial scale is large, a linear approximation 
around the initial solution can fit the data. 

Neural Tangent Kernel

[Jacot, Gabriel, & Hongler (2019)] 

Optimization dynamics and generalization errors 
can be analyzed through the linear approximation.

Inner product between feature maps: kernel 

Feature mapTaylor expansion

(linear approximation)



Convergence in NTK regime 7

High 
frequency

Low frequency 
First, low frequency 
components are captured. 
Afterward, high frequency 
components are captured.

Spectrum of NTK

…

Decreases to 0 as width 𝑀 → ∞
Fast learning rate

(faster than 𝑂(1/ 𝑇))

Decay rate of spectrum of 
NTK (Neural Tangent Kernel)

Theorem

𝑓𝑇: solution after 𝑇-updates

• SGD can achieve the best learning error rate.
• The frequency spectrum specific to the initial network 

determines the learning efficiency. 

Nitanda&Suzuki: Fast Convergence Rates of Averaged Stochastic Gradient Descent under 
Neural Tangent Kernel Regime, ICLR2021 (oral). Outstanding paper award.



Lower bound of linear estimator 8

Non-parametric regression

where 𝜉𝑖 ∼ 𝑁(0, 𝜎2) and 𝑥𝑖 ∈ 0,1 𝑑 ∼ 𝑃𝑋(𝑋) (i.i.d.).

[Hayakawa & Suzuki: 2020][Donoho & Johnstone, 1994]

Ex. Piecewise constant 
function with 3 jumps.

3 jumps

• Deep learning:

• Kernel ridge regression:

Reduced rank 
regression

Piece-wise 
smooth Besov space

Low dim. data

Non-convexity
sparsity

Variable smooth
Besov space



Optimization in non-NTK regime
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Representation
ability

Generalization
ability

Optimization

• Suzuki: Generalization bound of globally optimal non-convex neural network training: Transportation map estimation by 
infinite dimensional Langevin dynamics. NeurIPS2020, spotlight.

• Suzuki&Akiyama: Benefit of deep learning with non-convex noisy gradient descent: Provable excess risk bound and 
superiority to kernel methods. network training: Transportation map estimation by infinite dimensional Langevin 
dynamics. ICLR2021, spotlight.

• Boris Muzellec, Kanji Sato, Mathurin Massias, Taiji Suzuki: Dimension-free convergence rates for gradient Langevin 
dynamics in RKHS. arXiv:2003.00306.



Optimization beyond NTK regime 10

Noise

Gradient descent

The model is not linearly approximated. 
We need to solve “non-convex” optimization. 

SGD is a noisy gradient descent.
Noisy perturbation is helpful to escape local minimum. 



Optimality of noisy gradient descent 11

Gaussian noise

Gradient descent

We can show optimality of noisy gradient descent.
➢ It can achieve the global optimal solution. 
➢ DL can avoid the curse of dimensionality. 

We showed noisy gradient descent can achieve the global optimal 
solution even if there are infinitely many variables.

Suzuki: Generalization bound of globally optimal non-convex neural network training: 
Transportation map estimation by infinite dimensional Langevin dynamics. NeurIPS2020 (spotlight).

GLD: Gelfand and Mitter (1991); Borkar and 
Mitter 1999); Welling and Teh (2011).
Convergence analysis: Vempala and Wibisono
(2019); Raginsky, Rakhlin and Telgarsky (2017).



Optimization of NN 12

Loss function (squared loss): 

Regularized empirical risk minimization:

Infinite dimensional non-convex optimization problem

• 2-layer NN

• ResNet

(infinite width is allowed)

Model examples: 



Infinite-dim. Gradient Langevin dynamics 13

Cylindrical Brownian motion
Time discretization

(Euler-Maruyama scheme)

In our theory, we used a bid modified scheme (semi-implicit Euler scheme):

Gaussian noise

unbounded

[Muzellec, Sato, Massias, Suzuki (2020); Suzuki (NeurIPS2020)]



Optimization error bound 14

Thm (informal)

Geometric 
ergodicity

invariant measure
of continuous dynamics

[Muzellec, Sato, Massias, Suzuki (2020); Suzuki (NeurIPS2020)]

Analogous to Bayes posterior

Likelihood Prior

The distribution of 𝑊𝑡 weakly converges to an invariant measure 𝜋∞:

Time discretization

•Convergence to near global optimal is guaranteed even though the objective is non-convex.
•The rate of convergence is independent of dimensionality.

𝜅 > 0: arbitrary small positive realSuppose that                                    , 



Assumption
Hilbert space
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RKHS structure

Assumption (eigenvalue decay)

(not essential, can be relaxed to 𝜇𝑘 ∼ 𝑘−𝑝 for 𝑝 > 1)

Reference



Assumption (1)

• It either holds:
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Dissipativity: 

(stronger)

(weaker)

Reference



Assumption (2)

• Smoothness:
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• Third order smoothness:

• Strong smoothness condition:

(This is not standard, but, is satisfied in the previous examples)

(without this, the rate becomes slow)

Reference



Risk bounds 18

Gen. error: Excess risk: 

Time discretization

Optimization method (Infinite dimensional GLD): 

(Gen. gap)

Reference



Generalization error bound 19

Thm (Generalization error bound)

with probability 1 − 𝛿.

Opt. error: 

Ο(1/ 𝑛)
PAC-Bayesian stability bound [Rivasplata, Kuzborskij, Szepesvári, and Shawe-Taylor, 2019]

• Loss function ℓ is “sufficiently smooth.”

• Loss and its gradients are bounded:

Assumption



Excess risk evaluation

Additional assumption:
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Bernstein condition [Erven et al., 2015]:

• Squared loss: 𝑠 = 1
• Logistic loss with bounded 𝑓, 𝑓∗: 𝑠 = 1

• Loss function needs not be a log likelihood.

• The true distribution should has a light tail.

•

•

•

•

: model complexity

Excess risk:



Fast rate: general result 21

Thm (Excess risk bound: fast rate)

Can be faster than Ο(1/ 𝑛)



Example: classification & regression 22

Strong low noise condition:

For sufficiently large 𝑛 and any 𝛽 ≤ 𝑛, 

Classification

Regression

Model:

Excess classification error

Reference



Problem setting (teacher-student model)
23

Observation model：

From                        (observed data), we estimate 𝑓𝑊∗ .

Excess risk (mean squared error): 
➢ Convergence rate?
➢ Deep vs shallow?

：trainable parameter

：fixed parameter

Teacher-student model:

: the true parameter satisfies 
Trainable

Trainable



Comparison between deep and shallow 24

：trainable parameter

：fixed parameter

Trainable

Trainable

: the true parameter satisfies 

Theorem

Teacher-student model:

Estimation error can be bounded by

Worst case error of kernel methodDL trained by GLD

[Suzuki&Akiyama, ICLR2021]

Deep Linear (kernel)



Comparison between deep and shallow 25

：trainable parameter

：fixed parameter

Trainable

Trainable

: the true parameter satisfies 

Theorem
Estimation error

Teacher-student model:

can be bounded by

Worst case error of kernel method

𝑛-times large!!

DL trained by GLD

[Suzuki&Akiyama, ICLR2021]

Deep Linear (kernel)



Particle optimization method 
in mean field regime
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[Nitanda, Wu, Suzuki: Particle Dual Averaging: Optimization of Mean Field Neural Networks with Global 
Convergence Rate Analysis. NeurIPS2021.]

[Oko, Suzuki, Nitanda, Wu: Particle Stochastic Dual Coordinate Ascent: Exponential convergent algorithm 
for mean field neural network optimization. 2021]

Atsushi Nitanda



Mean field limit of 2-layer NN 27

𝑀 → ∞

Particles move to fit 
the model to the data.

(movement of each particle)

(distribution)

…

2-layer neural network:

Overparameterization (Mean field limit):

Non-linear with respect to parameters 𝑟𝑗 , 𝑤𝑗 𝑗=1

𝑀
.

Linear with respect to the prob. measure 𝜈.



Objective 28

ℓ: Smooth loss function
ℎ𝜃: neuron with param. 𝜽

L2-regularizationProb meas.

Negative entropy regularization

Difficulty: We don’t have any closed form representations of the expectations. 
→ Solution:

• Particle approximation.
• Sampling from gradient Langevin dynamics.

KL-div from a Gaussian distribution.

A convex function with respect to the density function 𝒒. 
→ We can apply a standard convex optimization technique.

[Nitanda, Wu, Suzuki: Particle Dual Averaging: Optimization of Mean Field Neural Networks with Global Convergence Rate Analysis. 
NeurIPS2021.]



Outline of the proposed algorithm 29

Approximate this by a linear functional of 𝑞.
e.g.,Approximation (which is something like a gradient w.r.t. 𝑞)

Solution:

→ This is the stationary distribution of the gradient Langevin dynamics:

discretize

Dual averaging (Nesterov, 2005; 2009; Xiao, 2009)

Gradient Langevin dynamics

The dual averaging method employs 

Can be approximated by GLD.

Explicit form



Algorithm description 30

GLD

GLD
Each neuron

In each iteration, the potential for 

updating each particle is given by ത𝑔(𝑡).



Convergence analysis 31

1. Outer loop: 

2. Inner loop: 

Total complexity: 

By setting the step size at the 𝑡-th iteration as                                ,

is sufficient for the number of inner iterations (GLD updates).

𝑂(𝜖−3) GLD updates to obtain 𝜖-optimal solution.

Theorem (informal)

The network width (# of particles) 𝑀 = 𝜖−2poly(𝑛, 𝑑) is sufficient to obtain
the iteration complexity described above.

• Polynomial order
• Simple analysis



Modification to SDCA

• Motivation: 
➢We want to improve the outer-iteration 

complexity for finite sample ERM setting.

➢SDCA (Stochastic Dual Coordinate Ascent) 
achieves linear convergence:

𝑛 +
𝐿

𝜇
log 1/𝜖 . 

32

※ DA: 1/𝜖

• Difficulty: 
➢How to combine gradient Langevin sampling and 

SDCA?

➢We want to skip the number of exact sampling as 
many as possible.

(One iteration of GLD requires Ο(𝑛) computation!)

[Oko, Suzuki, Nitanda, Wu (2021)]



Fenchel dual 33

where

Primal

Dual

=

(Fenchel’s duality theorem)

Strategy:
• We randomly pick-up one coordinate 𝑖 ∈ [𝑛]. (sampling one data point)

• Update 𝑔𝑖 by minimizing the dual problem: coordinate descent.



One coordinate update 34

(ideal update)

(requires integration)

(particle approximation)

(𝑚 ∈ [𝑀])

,

We update just one coordinate 𝑔𝑖 per iteration.

proximal gradient descent (2nd term is linearized)

→ We can sample particles via GLD. 

We “refresh” particles 
each ෤𝑛 iteration.



Algorithm description 35

At every ෤𝑛 iteration, 
we refresh particles.

Dual coordinate ascent
Particle weight update



Discretization error
(A1) ℓ𝑖 is 𝛾-smooth.

(A2) ℎ𝑖 𝜃 ≤ 1 for all 𝜃.

(A3) Other technical conditions.

36

Lemma (informal)

It holds that

uniformly over 𝑖 ∈ 𝑛 , 𝑡 ∈ [𝑛] with probability 1 − 𝛿.

(Ideal update)

If 𝑡 > 𝑛, the error can exponentially diverge. 
⇒ We re-sample 𝜃𝑚 𝑚=1

𝑀 by GLD at each 𝑡 = ෤𝑛 updates.



Convergence rate 37

iterations are sufficient to achieve 𝜖𝑃 duality gap:

Theorem (convergence rate, informal)

Total complexity: 
𝑀∗ = 𝑂 𝜖𝑃𝜆2

−1

𝐾∗: algorithm dependent, complexity 
to generate 𝑀∗ particles. 

(num of particles)

Suppose that ෥𝑛

𝑛𝜆2
=𝑂(1) and the number of particles satisfies

(A1) ℓ𝑖 is 1/𝛾-smooth.

(A2) ℎ𝑖 𝜃 ≤ 1 for all 𝜃.

(A3) Other technical conditions.

Then, 

More precisely

If deterministic optimization is used, the 
number of gradient evaluations become

𝑡end = 𝑂( 𝑛
𝜆2𝛾

log(1/𝜖𝑃) )

condition number



Sampling algorithm 38

The proposal is accepted with prob. 𝛼 and rejected otherwise:

• ULA (Unadjusted Langevin algorithm)

• MALA (Metropolis adjusted Langevin algorithm)



Log-Sobolev inequality 39

[R. Holley and D. Stroock. Logarithmic sobolev inequalities and stochastic Ising models. Journal of statistical 
physics, 46(5-6):1159–1194, 1987.]

Log-Sobolev inequality with a constant 𝒄𝐋𝐒

:

Lemma



Convergence analysis 40

• ULA (Unadjusted Langevin algorithm)

• MALA (Metropolis adjusted Langevin algorithm)

: TV-distance between the target 𝑝 and the marginal 
distribution of the 𝑘-th step sample.

[Vempala and Wibisono, 2019]

[Ma, Chen, Jin, Flammarion, and Jordan. Sampling can be faster than optimization. Proceedings of the 
National Academy of Sciences, 116(42):20881–20885, 2019]
[Lov’asz and Simonovits: Random walks in a convex body and an improved volume algorithm. Random 
Struct Alg, 4(4):359–412, 1993.]

Large conductance ← log-Sobolev



Experiments 41

𝜆1 = 10−2: fixed



Convergence in teacher-student setting

42

[Shunta Akiyama, Taiji Suzuki: On Learnability via Gradient Method for Two-Layer ReLU Neural Networks 
in Teacher-Student Setting. ICML2021]

Reference

Shunta Akiyama



where .

Problem setting 43

Noiseless observation:

Teacher-student model with ReLU activation:

Teacher Student (overparameterization)

• Overparameterized setting: 𝑀 ≫ 𝑚.
• Can the student model estimate the teacher model by GD?

Reference



Sparse regularization/GD 44

Sparse regularized learning: 

Sparse regularization

Weight decay yields sparse 
regularization.

Norm-dependent step size for gradient descent:

Initialization Gradient descent

Norm dependent step-size

Mean field setting

Reference



Convergence result 45

• Result 2: Convergence of GD

Theorem (informal)

Dual certificate + convergence guarantee by Chizat (2019) 
+ some technical modifications for ReLU.

Stage 1 (Global exploration):

Stage 2 (Local convergence):

There exists 𝐽0 such that 𝐽∗ < 𝐽0 < 𝐽𝜆(𝜈0) and sufficiently large 𝑀 such that

∃𝑘0 ≥ Ω( 𝐽0 − 𝐽∗) such that 

𝐽𝜆 𝜈𝑘0 − 𝐽∗ ≤ 𝐽0 − 𝐽∗.

∃𝜁 > 0 such that

𝐽𝜆 𝜈𝑘 − 𝐽∗ ≤ 1 − 𝜁 𝑘−𝑘0(𝐽𝜆 𝜈𝑘0 − 𝐽∗) (∀𝑘 ≥ 𝑘0).

• 𝑀 could be exp Ω(𝑑) .

• It also holds that ෪𝑊2
2
𝜈𝑘 , 𝜈

∗ ≤ Ο( 1 − 𝜁 𝑘−𝑘0), but we don’t have Θ𝑘 − Θ∗ → 0.
Convergence in measure space Convergence in parameter space

Reference



Numerical experiment 46

Optimization dynamics

True

Trained neurons

• The parameter does not converge to the true one. 
• The measure representation converges to the true one.

• Linear model requires 𝜖−𝑑 neurons [Yehudai and Shamir, 2019].
• The solution with sparse regularization possesses only 𝑚 atoms.

(resolving the curse of dimensionality)

Reference



Double descent and optimization

47

[Amari, Ba, Grosse, Li, Nitanda, Suzuki, Wu, Xu: When Does Preconditioning Help or Hurt 
Generalization? ICLR2021]

Denny Wu



Double descent 48

• Even if the model size is larger than the 
sample size, it can generalize.

• The variance decreases as the model 
complexity increases. 

Amari, Ba, Grosse, Li, Nitanda, Suzuki, Wu, Xu: When Does Preconditioning Help or Hurt 
Generalization? ICLR2021.

[Belkin et al.: Reconciling modern machine learning practice and the bias-variance trade-off. 2018]

[Belkin, Rakhlin, Tsybakov, 2018]



Preconditioned Gradient Descent 49

Preconditioned Gradient Descent

𝑃 = 𝐼: Gradient descent (GD)
𝑃 = Σ𝑥

−1: Natural Gradient descent (NGD)

(interpolation)

𝑑 ≫ 𝑛: overparameterized regime

Q: How does the preconditioner 𝑃
affect the predictive accuracy? 

(population Fisher)



Optimal choice of preconditioner 50

Bias-variance decomposition

1. Variance:

2. Bias:

(population cov) minimizes the variance. 

NGD is optimal in terms of variance.

No free-lunch: the optimal P is not known a priori:
• GD generalizes better when the target is isotropic Σ𝛽∗ = 𝐼.

• NGD is better when the target is misaligned Σ𝛽∗ = Σ𝑥
−1.

(Bayesian setting: Average predictive risk 

over a random 𝛽∗ with E 𝛽∗𝛽∗T = Σ𝛽∗)

Theorem (informal)

Interpolation of GD 
and NGD is beneficial.

[Amari, Ba, Grosse, Li, Nitanda, Suzuki, Wu, Xu: When Does Preconditioning Help 
or Hurt Generalization? ICLR2021]

We derived an exact form of the asymptotic risk when Τ𝑑 𝑛 → 𝛾 > 1 as 𝑛 → ∞.



More detailed expression 51

(A2) The spectral distribution of Σ𝑋𝑃: = 𝑃1/2Σ𝑃1/2 converges weakly to 𝐻𝑋𝑃.

• self-consistent equation: 

→ Limiting distribution of eigenvalues of 1
𝑛
𝑋𝑃𝑋⊤.

1. Variance:

2. Bias:

(A3) 𝑃 and Σ shares the same eigenvectors 𝑈.

where (𝑒𝑥, 𝑒𝜃 , 𝑒𝑥𝑝) are eigenvalues of Σ, Σ𝑋𝑃, diag(𝑈
⊤Σ𝛽∗𝑈) and jointly 

converge weakly to 𝑣𝑥, 𝑣𝜃 , 𝑣𝑥𝑝 .



Summary

• Optimization theory
➢SGD in Neural Tangent Kernel regime
➢Noisy gradient descent: a near global optimum

✓Estimation error separation between kernel and deep 
learning

➢Particle gradient method in mean field regime
✓Combination of known 1st order optimization technique 

and particle sampling

➢Optimization method selection for minimum norm 
interpolator 

52

In deep learning, optimization and generalization cannot 
be separated.
More detailed analysis will be required by bridging these 
two research fields:
feature extraction, loss landscape, benign overfitting…


