
17th Nov 2021 - EPFL CIS – RIKEN AIP Seminar Series

Learning with
Strange Gradients

Martin Jaggi

 
 
Machine Learning and Optimization Laboratory

mlo.epfl.ch

http://mlo.epfl.ch

Collaborative & Federated
Training

device

⚙

device

⚙

device

⚙

device

⚙

device

⚙

Updates

Data

server
or P2P

Gradients from strange collaborators:

 - Federated Learning1

Gradients from strange architectures3

Gradients from strange collaborators:

 - Personalization2

4 Gradients from faulty/malicious collaborators:

 - Byzantine-robust Training

Stochastic Gradient Descent (SGD)

device

⚙

xt+1 := xt + Δx

min
x

f(x) = 1
|data | ∑

i ∈ data

fi(x)

it ∼ Uniform(1, |data |)

Δx = − γt ∇fit(xt)

𝒞(Δx)

from backpropagation

Gradients from strange
collaborators:

 - Federated Learning

1

Client drift

min
x

1
n

n

∑
i

fi(x)

✤ Federated Learning

⚙ ⚙⚙⚙

Updates

server

yi := yi − η∇fi(yi)

x := 1
n

n

∑
i=1

yi

for some local steps

(aggregation)

✤ Fed Avg / Local SGD
 x⋆
1

x⋆
2

x⋆

x
x

y1

y2

A How momentum can help reduce client drift

x?

x?

1

x?

2

xt

mt

xt+1
xt

xt+1

mt

FEDAVG updates MIME updates

Figure 2: Client-drift in FEDAVG (left) and MIME (right) is illustrated for 2 clients with 3 local steps
and momentum parameter � = 0.5. The local SGD updates of FEDAVG (shown using arrows for
client 1 and client2) move towards the average of client optima x?

1+x?
2

2 which can be quite different
from the true global optimum x?. Server momentum only speeds up the convergence to the wrong
point in this case. In contrast, MIME uses unbiased momentum and applies it locally at every update.
This keeps the updates of MIME closer to the true optimum x?.
In this section we examine the tension between reducing communication by running multiple client
updates each round, and degradation in performance due to client drift [30]. To simplify the dis-
cussion, we assume a single client is sampled each round and that clients use full-batch gradients.

Server-only approach. A simple way to avoid the issue of client drift is to take no local steps.
We sample a client i ⇠ D and run SGD with momentum (SGDm) with momentum parameter � and
step size ⌘:

xt = xt�1 � ⌘ ((1� �)rfi(xt�1) + �mt�1) ,

mt = (1� �)rfi(xt�1) + �mt�1 .
(2)

Here, the gradient rfi(xt) is unbiased i.e. E[rfi(xt)] = rf(xt) and hence we are guaranteed
convergence. However, this strategy can be communication-intensive and we are likely to spend all
our time waiting for communication with very little time spent on computing the gradients.

FEDAVG approach. To reduce the overall communication rounds required, we need to make more
progress in each round of communication. Starting from y0 = xt�1, FEDAVG [41] runs multiple
SGD steps on the sampled client i ⇠ D

yk = yk�1 � ⌘rfi(yk�1) for k 2 [K] , (3)

and then a pseudo-gradient g̃t = �(yK �xt) replaces rfi(xt�1) in the SGDm algorithm (2). This
is referred to as server-momentum since it is computed and applied only at the server level [25].
However, such updates give rise to client-drift resulting in performance worse than the naı̈ve server-
only strategy (2). This is because by using multiple local updates, (3) starts over-fitting to the local
client data, optimizing fi(x) instead of the actual global objective f(x). The net effect is that
FEDAVG moves towards an incorrect point (see Fig 2, left). If K is sufficiently large, approximately

yK x?

i
, where x?

i
:= argmin

x
fi(x)

) Ei⇠D[g̃t] (xt � Ei⇠D[x
?

i
]) .

Further, the server momentum is based on g̃t and hence is also biased. Thus, it cannot correct for
the client drift. We next see how a different way of using momentum can mitigate client drift.

Mime approach. FEDAVG experiences client drift because both the momentum and the client
updates are biased. To fix the former, we compute momentum using only global optimizer state as
in (2) using the sampled client i ⇠ D:

mt = (1� �)rfi(xt�1) + �mt�1 . (4)

To reduce the bias in the local updates, we will apply this unbiased momentum every step k 2 [K]:

yk = yk�1 � ⌘((1� �)rfi(yk�1) + �mt�1) . (5)

15

Client drift

A How momentum can help reduce client drift

x?

x?

1

x?

2

xt

mt

xt+1
xt

xt+1

mt

FEDAVG updates MIME updates

Figure 2: Client-drift in FEDAVG (left) and MIME (right) is illustrated for 2 clients with 3 local steps
and momentum parameter � = 0.5. The local SGD updates of FEDAVG (shown using arrows for
client 1 and client2) move towards the average of client optima x?

1+x?
2

2 which can be quite different
from the true global optimum x?. Server momentum only speeds up the convergence to the wrong
point in this case. In contrast, MIME uses unbiased momentum and applies it locally at every update.
This keeps the updates of MIME closer to the true optimum x?.
In this section we examine the tension between reducing communication by running multiple client
updates each round, and degradation in performance due to client drift [30]. To simplify the dis-
cussion, we assume a single client is sampled each round and that clients use full-batch gradients.

Server-only approach. A simple way to avoid the issue of client drift is to take no local steps.
We sample a client i ⇠ D and run SGD with momentum (SGDm) with momentum parameter � and
step size ⌘:

xt = xt�1 � ⌘ ((1� �)rfi(xt�1) + �mt�1) ,

mt = (1� �)rfi(xt�1) + �mt�1 .
(2)

Here, the gradient rfi(xt) is unbiased i.e. E[rfi(xt)] = rf(xt) and hence we are guaranteed
convergence. However, this strategy can be communication-intensive and we are likely to spend all
our time waiting for communication with very little time spent on computing the gradients.

FEDAVG approach. To reduce the overall communication rounds required, we need to make more
progress in each round of communication. Starting from y0 = xt�1, FEDAVG [41] runs multiple
SGD steps on the sampled client i ⇠ D

yk = yk�1 � ⌘rfi(yk�1) for k 2 [K] , (3)

and then a pseudo-gradient g̃t = �(yK �xt) replaces rfi(xt�1) in the SGDm algorithm (2). This
is referred to as server-momentum since it is computed and applied only at the server level [25].
However, such updates give rise to client-drift resulting in performance worse than the naı̈ve server-
only strategy (2). This is because by using multiple local updates, (3) starts over-fitting to the local
client data, optimizing fi(x) instead of the actual global objective f(x). The net effect is that
FEDAVG moves towards an incorrect point (see Fig 2, left). If K is sufficiently large, approximately

yK x?

i
, where x?

i
:= argmin

x
fi(x)

) Ei⇠D[g̃t] (xt � Ei⇠D[x
?

i
]) .

Further, the server momentum is based on g̃t and hence is also biased. Thus, it cannot correct for
the client drift. We next see how a different way of using momentum can mitigate client drift.

Mime approach. FEDAVG experiences client drift because both the momentum and the client
updates are biased. To fix the former, we compute momentum using only global optimizer state as
in (2) using the sampled client i ⇠ D:

mt = (1� �)rfi(xt�1) + �mt�1 . (4)

To reduce the bias in the local updates, we will apply this unbiased momentum every step k 2 [K]:

yk = yk�1 � ⌘((1� �)rfi(yk�1) + �mt�1) . (5)

15

yi := yi − η((1−β)∇fi(yi) + βm)

m := (1−β)∇fi(x) + βm

for some local steps

aggregated on server
after each round

Mime algorithm framework

Mime convergence

Ω(Lζ

Sε3/2
+

ζ2

Sε
+

L
ε) Lower bound  

(server-only)

𝒪((n
S)

3/2 L
ε) Scaffold

𝒪(δ(ζ+σ)
ε3/2

+
ζ2 + σ2

ε
+

δ
ε)

𝒪(δζ

Sε3/2
+

ζ2

Sε
+

δ
ε)

MimeLiteMVR

MimeMVR

δ≪L
ζ
σ

Data Heterogeneity:

inter-cl. gradient variance
inter-cl. Hessian similarity

intra-cl. gradient variance

𝔼[∥∇f(xout)∥2] ≤ ε

Number of rounds to reach

:

Gradients from strange
collaborators:

 - Personalization

2

From federated towards decentralized

device
⚙

device

⚙

device

⚙

device

⚙

device

⚙

Updates

FL
server

user

user

user

user

user

user

Collaborative Learning

min
x

f1(x)

min
x

fn(x)

✤ Collaborative / Personalized

min
x

f0(x)

user

user

user

user

user

user

f0
fi

fj

min
x

1
n

n

∑
i

fi(x)

✤ Federated

Personalized learning / optimization

user

user

user

user

user

user

f0
fi

fj

x := x − γ
n

∑
i=0

αi ∇fi(x)

✤ Weighted averaging

x := x − γ
n

∑
i=0

(αi ∇fi(x)+ci)
✤ Weighted averaging with bias correction

idea similar to Scaffold

Theorem: Convergence on personal objective
for non-convex smooth objectives,

using exponential moving average to learn

f0

ci

𝔼[∥∇f0(xout)∥2] = 𝒪(LF0 σ2
0

(n + 1)T)

Linear Speedup in Personalized Collaborative Learning, arXiv

n

Gradients from strange
architectures

3

Alternating Partial Training for Neural Nets

Output Layer

Hidden Layers

Input Layer

Theorem: Convergence on original network
for non-convex smooth objectives,

f

1
T

T−1

∑
t=0

𝔼[∥∇f(xt)∥2] = 𝒪(q4LF0 σ2

T)
and similarly for smaller core network

 - Masked Training of Neural Networks with Partial Gradients, arXiv

 - AC/DC: Alternating Training of Deep Neural Networks, Peste et al, NeurIPS 2021

q : “gradient alignment” between parent and core network

4

Gradients from  
faulty/malicious collaborators:

 - Byzantine-robust Training

Malicious actors in FL

server

Unstable

Client

Malicious

Client

Updates

Byzantine Robust Training

server

Unstable

Client

Malicious

Client

w := w − γ agg({gi})
g1 gn

agg({gi}) := avg({gi})

:= CM({gi})

Examples:

•Coordinate-wise median

[Yin et al. 2017]

•Krum 
[Blanchard et al. 2018] 

•Geometric median  
/ RFA [Pillutla et al. 2019]

Fall of Empires
✤ Robustness of the aggregation rule  

does it imply robust training?

✤ NO!

✤ Time-coupled attacks: 

Little is enough

agg({gi})

Strong negative result

✤ Any aggregation rule which does not use history  
will fail training (convergence)

Fix: Using history with momentum

✤ Simply use worker momentum 

✤ Effectively averages past gradients, reducing variance 

✤ Aggregate worker momentum instead of gradients 

w := w − γ agg({mi})

mi := (1 − β)gi + βmi

Aggregation with Centered Clipping

✤ Norm-based clipping, before averaging

✤ Removes outliers

✤ Center at previous aggregated update

CC = v + clipτ(gi − v)

Robustness theorem

Theorem: Given any (𝛅max , c)-robust aggregator,
under a 𝛅-fraction of attackers and 𝞂2 variance, our
algorithm outputs xout s.t.

n

✤ Mime: Mimicking Centralized Stochastic Algorithms in Federated Learning

✤ NeurIPS 2021 paper link

✤ Optimal Model Averaging: Towards Personalized Collaborative Learning

✤ FL workshop at ICML 2021 paper link

✤ Linear Speedup in Personalized Collaborative Learning

✤ arXiv paper link

✤ Masked Training of Neural Networks with Partial Gradients

✤ arXiv paper link

✤ Learning from History for Byzantine Robust Optimization

✤ ICML 2021 paper link

References

1

2

4

3

http://proceedings.mlr.press/v139/karimireddy21a/karimireddy21a.pdf
https://spkreddy.org/publications/PFL_ICML21.pdf
https://arxiv.org/abs/2111.05968
https://arxiv.org/abs/2106.08895
http://proceedings.mlr.press/v139/karimireddy21a/karimireddy21a.pdf

Thanks

website: mlo.epfl.ch

Machine Learning and Optimization Laboratory

Sai Praneeth Karimireddy, Sebastian U. Stich, Lie He,  
El Mahdi Chayti, Amirkeivan Mohtashami, Felix

Grimberg, Nicolas Flammarion, Satyen Kale, Mehryar
Mohri, Sashank J. Reddi, Ananda Theertha Suresh

http://mlo.epfl.ch

