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Gradients from strange collaborators:
- Federated l.earning

Gradients from strange collaborators:
- Personalization

Gradients from strange architectures

Gradients from faulty/malicious collaborators:

- Byzantine-robust 'lraining



Stochastic Gradient Descent (SGD)

min fix) = —— > fix)
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device
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[AX = — /1 Vj;-t(xt) from backpropagation



Gradients from strange
collaborators:
- Federated Learning



Chent drift

+ Federated Learning Vg / I \
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min % i fi(x)

+ Fed Avg / Local SGD

for some local steps
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Chent drift

FEDAVG updates MIME updates




Mime algorithm framework

for some local steps

Ve ) 77((1—/5) Viiy) + ,Bm)

m:=-p/)V[f(x)+ fm

agqregated on server
after each round



Viime convergence

Number of rounds to reach
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Data Heterogeneity:
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Scaffold

MimeLiteMVR

MimeMVR

Lower bound
(server-only)



Gradients from strange
collaborators:
- Personalization



From federated towards decentralized




Collaborative Learning

<+ Federated

min lz £(x)

+ Collaborative / Personalized

min f;(x)

min fo(x)

min f (x)



Personalized learning / optimization

+ Weighted averaging

X =X — yz a: Vf(x)
i=0

+ Weighted averaging with bias correction

X =X — yz (cxl- Vfl-(x)+cl-)
i=0

idea similar to Scaffold



Theorem: Convergence on personal objective f,
for non-convex smooth objectives,
using exponential moving average to learn c;
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Linear Speedup in Personalized Collaborative Learning, arXiv



Gradients from strange
architectures
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Alternating Partial Training for Neural Nets

Output Layer
Hidden Layers

Input Layer



Theorem: Convergence on original network f
for non-convex smooth objectives,

——
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and similarly for smaller core network

“oradient alignment” between parent and core network

- Masked Training of Neural Networks with Partial Gradients, arXiv

- AC/DC: Alternating Training of Deep Neural Networks, Peste et al, NeurIPS 2021



Gradients from
faulty/malicious collaborators:
- Byzantine-robust Training
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Byzantine Robust Training

agg(1g;}) = avg(ig;})

= CM({g.
w:=w-—yagg({g}) &

Pea

server

e Coordinate-wise median

[Yin et al. 2017]
& &
® Krum
[Blanchard et al. 2018]

l ® Geometric median

- / RFA [Pillutla et al. 2019]
Unstable Malicious

Client Client
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Robustness of the aggregation rule agg(18it) ¢

oes it 1mp1y robust training?
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Little is enough




Strong negative result

+* Any aggregation rule which does not use history

will fail training (convergence)



Fix: Using history with momentum

+ Simply use worker momentum

+ Effectively averages past gradients, reducing variance

+ Aggregate worker momentum instead of gradients

w:=w—yagg(m,})



Aggregation with Centered Clipping

+ Norm-based clipping, before averaging
CC=v+clip (g —)
+ Removes outliers

+ Center at previous aggregated update



Robustness theorem

Theorem: Given any (dmax, ¢)-robust aggregator,
under a o-fraction of attackers and o? variance, our

algorithm outputs xout s.t.
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