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Predictive materials modeling
with atomic-scale simulations



Simple models, complex physics

Simple models, with minimal number of parameters fitted by comparison
with experimental quantities

Aim: capture the essence of atomic-scale interactions, and understand
emergent phenomena (phase transitions, equations of state...)

V ({r}) ∼
∑
ij

zizj∣∣ri − rj
∣∣︸ ︷︷ ︸

electrostatics

+
∑
bonds

ki (ri − r′i)
2

︸ ︷︷ ︸
bonded terms

−
∑
ij

Aij∣∣ri − rj
∣∣6︸ ︷︷ ︸

dispersion

+ . . .
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Metropolis et al., JCP (1953); Alder & Wainwright, JCP (1959); Verlet, Phys. Rev. (1969)



First-principles calculations

Practical approaches to evaluate the electronic structure

Quantitatively accurate simulations, without fit to experiments

High computational effort
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Kohn & Sham, Phys. Rev. (1965); Cížek, JCP (1966); Car & Parrinello, PRL (1985)



Surrogate models for quantum chemistry

Electronic-structure calculations predict accurately molecular properties

Machine-learning models provide inexpensive approximations

There is more to life than energy and forces!

FIRST-PRINCIPLES
QUANTUM MODELS
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Atomistic machine learning & the glossy press
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Cheng, Engel, Behler, Dellago,MC, PNAS (2019)

http://dx.doi.org/10.1073/pnas.1815117116


Atomistic machine learning & the glossy press
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Cheng, Mazzola, Pickard,MC, Nature (2020)

http://dx.doi.org/10.1038/s41586-020-2677-y


Atomistic machine learning & the glossy press

2,2-dimethylhexane

octatetraene

cis-4-octene cysteine

tryptophan

guanine

methionine

fructose

Method RMSE
CCSD/ML 0.304
CCSD/DFT 0.573
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Wilkins, Grisafi, Yang, Lao, DiStasio,MC, PNAS (2019);

http://dx.doi.org/10.1073/pnas.1816132116


Atomistic machine learning & the glossy press
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V. Deringer et al., Nature (2021)

http://dx.doi.org/10.1038/s41586-020-03072-z


Molecules as atom clouds

Can we develop a rigorous theory of representations for atomic-scale ML?

From a mathematical perspective, molecules and materials are treated as
point clouds, decorated by the chemical nature of the atoms

An alternative view is that each molecule is a fully-connected graph, with
atoms as nodes and separating vectors as edges
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A unified theory of ML
representations



A Dirac notation for ML

features 
index

representation
target & nature

radial indices

angular channels

structure

center
field

correlation
order parity

rot. 
symmetry

A representation maps a structure A (or one environment Ai ) to a vector
discretized by a feature index Q
Bra-ket notation 〈Q|A; rep.〉 indicates in an abstract way this mapping,
leaving plenty of room to express the details of a representation
Dirac-like notation reflects naturally a change of basis, the construction
of a kernel, or a linear model

〈Y |A〉 =
∫

dQ 〈Y |Q〉 〈Q|A〉
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Willatt, Musil,MC, JCP (2019), arxiv:1807.00408; https://tinyurl.com/dirac-rep
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k(A,A′) = 〈A|A′〉 ≈
∫

dQ 〈A|Q〉 〈Q|A′〉
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A Dirac notation for ML
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discretized by a feature index Q
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E(A) = 〈E |A〉 ≈
∫

dQ 〈E |Q〉 〈Q|A〉
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A phylogenetic tree of ML representations

non-linear
functions

Cartesian 
coordinates

atom 
density
fields

internal 
coordinates

atom
centred

distributions

density
correlation
features

atomic
symmetry
functions

distance
histograms

sorted
distances

molecular
graphspermutations

translations

rotations
(density products)

permutations
(histogram)

permutations
(sorting)

symmetry

family of features
other relation

molecular
matrices

sorted 
eigenvalues

equivalent

Wasserstein
metric

sharp

smooth

δ limit

blur

permutation
invariant

polynomials

permutations
(average)

Behler-Parrinello (2,3)
DeepMD (2,3)

GTTP (2,3)projectionACE (n*)
MTP (n*)
SNAP (4)

SOAP (3)
FCHL (2,3,4)
Wavelets (3)

NICE (n*)

g(r) (2)
MBTR (2,3)

Diffraction FP

potential
fields

translations
& rotations

symmetrized
local field

LODE (n)

PIV (2)
BoB (2)

Sorted CM (2)

Spectral FP (n)
SPRINT (n)

Z matrix

aPIPs (n*)

3D Voxel

global
transform

translations
& rotations

named features (body order)
   2,3,4: radial, angular, dihedrals
   n: n-body
   n*: complete n-body linear basis
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Musil et al., Chem. Rev. (2021)



What do we want from a representation?
Structure representations should: 1. be complete (injective); 2. reflect
basic physical symmetries; 3. be smooth, regular; 4. exploit additivity
Cartesian coordinates fulfill only 1 and 3

structure space

feature space

1

2

3

4

1

2

3
4

symmetry

smoothness

completeness

additivity

translations

rotations

permutations
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Musil et al., Chem. Rev. (2021)



Additivity, and locality

A representation of a structure in terms of a sum over atom-centered
terms implies (for a linear model or an average kernel) an additive form of
the property

Additivity and locality lead to transferable models with a divide and
conquer structure
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Symmetrized field construction
Start from a non-symmetric representation (Cartesian coordinates)
Define a decorated atom-density |ρ〉 (permutation invariant)
Translational average of a tensor product |ρ〉 ⊗ |ρ〉 yields atom-centred
(and t̂ invariant) |ρi〉
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Willatt, Musil,MC, JCP (2019)

http://dx.doi.org/10.1063/1.5090481
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A universal feature construction
Rotationally-averaged representations are essentially the same n-body
correlations that are used in statistical theories of liquids
Linear models built on |ρ⊗νi ; g → δ〉 yield (ν + 1)-body potential expansion

V (Ai) =
∑

ij V
(2)
(
rij
)
+
∑

ij V
(3)
(
rij , rik , ωijk

)
. . .

*
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Willatt, Musil,MC, JCP (2019); Drautz, PRB (2019); Glielmo, Zeni, De Vita, PRB (2018)



Smooth overlap of atomic
positions: a worked example



Two-neighbors descriptors
Construction of a three-body (ν = 2) invariant atomic descriptor

1 Define relative position of neighbors (translation-invariant)
2 Positions are transformed in a neighbor density (permutation invariant)
3 Symmetrize over rotations a tensor product of the neighbor densities
4 This is equivalent to a function of two distances and one angle
5 g → δ limit⇒ list of 2-neighbors tuples (rj1 i , rj2 i , r̂j1 i · r̂j2 i)
6 Linear model⇒ 3-body potential!
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Density trick in an 〈nlm| basis
The symmetrized correlations can be computed in closed form using a
discrete basis

The neighbor density can be expanded on a basis of radial functions
〈x|n〉 ≡ Rn(x) and spherical harmonics 〈x̂|lm〉 ≡ Ym

l (x̂)
Spherical harmonics transform linearly under rotations based on Wigner
rotation matrices Dl

(
R̂
)

Orthogonality of Wigner matrices yields the SOAP powerspectrum
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There are more things in
heaven and earth, Horatio, than
those transforming like a scalar



Machine-learning for tensors

What if we want to learn vectors or general tensors? We need features
that are equivariant to the tensor under rotations.

dα (Ai) =

∫
dQ 〈d |Q〉 〈Q|A; ρ⊗νi ;α〉

dα
(
R̂Ai

)
=

∫
dQ 〈d |Q〉 〈Q|R̂A; ρ⊗νi ;α〉
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Glielmo, Sollich, De Vita, PRB (2017); Grisafi, Wilkins, Csányi, &MC, PRL (2018); Veit et al., JCP (2020)
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Machine-learning for tensors

What if we want to learn vectors or general tensors? We need features
that are equivariant to the tensor under rotations.

dα (Ai) =

∫
dQ 〈d |Q〉 〈Q|A; ρ⊗νi ;α〉

yλµ
(
R̂Ai

)
=

∫
dQ 〈d |Q〉

∑
µ′

Dλµµ′
(
R̂
)
〈Q|A; ρ⊗νi ;λµ〉

* **
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Grisafi, Wilkins, Csányi, &MC, PRL (2018); Willatt, Musil, &MC, JCP (2019)

http://dx.doi.org/10.1103/PhysRevLett.120.036002


A hierarchy of equivariant features

Equivariant N-body features transform like angular momenta

〈Q|R̂A; ρ⊗νi ;λµ〉 ∼
∑
µ′

Dλµµ′ (R) 〈Q|A; ρ⊗νi ;λµ′〉

Recursive construction based on sums of angular momenta and an
expansion of the atom density

〈n1|ρ⊗1i ;λµ〉 ≡ 〈n1λ (−µ)|ρi〉

〈. . . ; nν lνkν ; nlk|ρ⊗(ν+1)
i ;λµ〉 =∑

qm

〈n|ρ⊗1i ; lm〉 〈. . . ; nν lνkν |ρ⊗νi ; kq〉 〈lm; kq|λµ〉

Can be used to compute efficiently invariant features |ρ⊗νi ;00〉
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Nigam, Pozdnyakov,MC, JCP (2020); https://github.com/cosmo-epfl/nice

http://dx.doi.org/10.1063/5.0021116
https://github.com/cosmo-epfl/nice


NICE features for ML
Problem: number of features grows exponentially with ν
Solution: N-body iterative contraction of equivariants (NICE)

After each body order increase, the most relevant features are selected and
used for the next iteration
Systematic convergence with ν and contraction truncation

body-order
iteration

contraction
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NICE features for ML
Problem: number of features grows exponentially with ν
Solution: N-body iterative contraction of equivariants (NICE)

After each body order increase, the most relevant features are selected and
used for the next iteration
Systematic convergence with ν and contraction truncation
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Comparing representations



Measuring feature spaces
General problem: how do we compare information content of different
choices of features? How to compare metrics and kernels?
Feature space Reconstruction Error (FRE) measures the
linearly-embeddable mutual information. Locally-linear and kernelized
extensions also available

GFRE(F → F ′) = min
P∈RnF×nF′

‖XF ′ − XFP‖
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GFRE(F,F')
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1

F≅F'

F⟂F'

F⊂F'

F'⊂F

SOAP vs
BPSF
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Are these representations complete?

It is well-known that 2-body correlations are ambiguous: one can build
tetrahedra with same pair distances that are different

Surprise: neither are 3 (and 4!!) body feature! Problem gets important as
model accuracy is increased

24 Michele Ceriotti cosmo.epfl.ch Representations in atomistic ML

Boutin, Kemper, Ann. Adv. Math. (2004); Figure from Bartók, Kondor, Csányi, PRB (2013)
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Symmetry and sensitivity

Local characterization of features based on the SVD of the Jacobian

Symmetric features must have low-rank J environments, connected with
discrete symmetries

Interesting twist: degenerate manifolds crossing→ spurious singularities
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Symmetry and models

Zeros in the Jacobian singular value spectrum enforce the correct
extremal behavior for symmetric structures

... but for degenerate structures: artificial zero-force points!

Deep consequences for equivariant models

zero force
(symmetry, accidental)

u1 u2
u1 u2

u1 u2

zero gradient
(symmetry)
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How about graph
convolution schemes?



Basic distance graph convolution

Atoms are nodes in a fully-connected network. Edges are decorated by
(functions of) interatomic distances rij
Each node is decorated by the nature of its neighbors and their distance
h (Ai) =

(
ai,
{
(aj , rij)

})
The multiset of neighbors and edges is hashed, and used as a label to
describe the nodes. The process can be iterated

*

28 Michele Ceriotti cosmo.epfl.ch Representations in atomistic ML

SchNET: Schütt et al., JCP (2018)



Basic distance graph convolution

Atoms are nodes in a fully-connected network. Edges are decorated by
(functions of) interatomic distances rij
Each node is decorated by the nature of its neighbors and their distance
h (Ai) =

(
ai,
{
(aj , rij)

})
The multiset of neighbors and edges is hashed, and used as a label to
describe the nodes. The process can be iterated

*
28 Michele Ceriotti cosmo.epfl.ch Representations in atomistic ML



Basic distance graph convolution

Atoms are nodes in a fully-connected network. Edges are decorated by
(functions of) interatomic distances rij
Each node is decorated by the nature of its neighbors and their distance
h (Ai) =

(
ai,
{
(aj , rij)

})
The multiset of neighbors and edges is hashed, and used as a label to
describe the nodes. The process can be iterated

*

28 Michele Ceriotti cosmo.epfl.ch Representations in atomistic ML



Graph convolution, pros and cons
Bad news: there are known discrete graphs that cannot be distinguished
by this procedure (W-L test)
Good news: things seem to be fine for molecular graphs (fully-connected,
distance-decorated 3D point clouds); GC resolves all known
counterexamples of atom-centered representations
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A counterexample for distance-based CNN

A family of 3D point clouds with degenerate pairs for GCNN. Key idea: the
distance matrix is identical, except for a swap

Can be folded to give finite 3D structures

Hard limit to the accuracy for plausible molecular geometries

Modern architectures that use angular/directional information (and

simple models based on |ρ⊗2i 〉) are immune

a b c
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Outlook



Towards a rigorous theory of atomistic ML
Atomistic simulations have a long tradition of fitting potentials, giving a
framework to understand the implication of representations and models
to machine learn atomic-scale properties
Locality, symmetry and equivariance are key elements to incorporate
domain priors. Non-locality: another interesting story!
A different perspective on descriptive power and transferability. Relevant
for general geometric ML?
A systematic theory of atom-centered representations. Extend to
message-passing architectures?
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Computational science & modeling @ EPFL

cosmo.epfl.ch
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A software stack for atomistic machine learning

Integrating ML and atomistic simulations: from representations to
models to advanced MD

Interoperability and data sharing with the rest of the ecosystem

i-PI: a universal force
engine for advanced 
(PI)MD simulations

scikit-cosmo: 
sklearn-style 
python library
of ML utilities

librascal: 
C++/python 
library for 
density-based 
features and 
(sparse) kernel 
models 

chemiscope: 
a portable, 
browser-based
structure-property 
explorer

feature 
selection

feature 
calculation

model
evaluation

data
analytics

trajectory
visualization

NICE

TENSOAP

CP2K

Quantum
ESPRESSO LAMMPS

Plumed

AiiDA
signac

QUIP

n2p2
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Slides→ tinyurl.com/riken-epfl-2022
Review→ Musil et al. ChemRev (2020)

https://tinyurl.com/riken-epfl-2022
https://doi.org/10.1021/acs.chemrev.1c00021



