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Predictive materials modeling
with atomic-scale simulations



Simple models, complex physics

o Simple models, with minimal number of parameters fitted by comparison
with experimental quantities

o Aim: capture the essence of atomic-scale interactions, and understand
emergent phenomena (phase transitions, equations of state...)

{r} Z’rZIZ] Zk,-(r;—r;)z—zlﬁs—i—,,,

’_rf‘ bonds ij {I',-— f|

electrostatics bonded terms dispersion

veospat

Fi6. 1. Collisions of rigid spheres.

Metropolis et al., JCP (1953); Alder & Wainwright, JCP (1959); Verlet, Phys. Rev. (1969)
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First-principles calculations

o Practical approaches to evaluate the electronic structure
e Quantitatively accurate simulations, without fit to experiments
e High computational effort

{— iVt o) +pe(O}: (1)

n1(r,r")
- [ w e, @

7|
where
pmd(ne)/dn, @n)
)= GO ), @)

pibi(r,0) = —8E/5} (1,0) + 3 A st (,0),  (Sa)
MiR;= —VgE (5b)

= — (3E/de,), (5¢)

Kohn & Sham, Phys. Rev. (1965); Cizek, JCP (1966); Car & Parrinello, PRL (1985)
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Surrogate models For quantum chemistry

o Electronic-structure calculations predict accurately molecular properties

FIRST-PRINCIPLES
QUANTUM MODELS

A= {aiarz‘} ];AI|\IJ> _ V|\I’> V({aiari})
&, N

[ )
L 4

5 Michele Ceriotti cosmo.epfl.ch Representations in atomistic ML



Surrogate models For quantum chemistry

o Electronic-structure calculations predict accurately molecular properties
o Machine-learning models provide inexpensive approximations

FIRST-PRINCIPLES
QUANTUM MODELS

A= {ai,ri} I‘Af|\11> _ V|‘I’> V({a’i7ri})
o A> DATA-DRIVEN V( |A>)

SURROGATE MODELS
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Surrogate models For quantum chemistry

o Electronic-structure calculations predict accurately molecular properties
e Machine-learning models provide inexpensive approximations
e There is more to life than energy and forces!

Time (ps)

Lan et al., Nat. Comm. (2021)
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Surrogate models For quantum chemistry

o Electronic-structure calculations predict accurately molecular properties
o Machine-learning models provide inexpensive approximations
e There is more to life than energy and forces!

FIRST-PRINCIPLES
QUANTUM MODELS
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Atomistic machine learning & the glossy press
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Cheng, Engel, Behler, Dellago, MC, PNAS (2019)
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http://dx.doi.org/10.1073/pnas.1815117116

Atomistic machine learning & the glossy press

Cheng, Mazzola, Pickard, MC, Nature (2020)
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http://dx.doi.org/10.1038/s41586-020-2677-y

Atomistic machine learning & the glossy press

Method RMSE
CCSD/ML  0.304
CCSD/DFT  0.573

cis-4-octene cysteine methionine

Wilkins, Grisafi, Yang, Lao, DiStasio, MC, PNAS (2019);
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Atomistic machine learning & the glossy press

~gh

nature

ATOMIC.
INSIGHTS

Machinelearning offers
mechanistic view of transitions -
indisordered silicon

V. Deringer et al., Nature (2021)
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http://dx.doi.org/10.1038/s41586-020-03072-z

Molecules as atom clouds

e Can we develop a rigorous theory of representations for atomic-scale ML?

o From a mathematical perspective, molecules and materials are treated as
point clouds, decorated by the chemical nature of the atoms

e An alternative view is that each molecule is a fully-connected graph, with
atoms as nodes and separating vectors as edges

)
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A unified theory of ML
representations



A Dirac notation for ML

features A representation
index target & nature

correlation
radial |nd|ces structure order ity
_ﬁ_
<n1l1;. Nyl k, A ,0 L0 )\u>
\ . Id \ rot
e
angular channels ! center symmetry

e Arepresentation maps a structure A (or one environment A;) to a vector
discretized by a feature index Q

o Bra-ket notation (Q|A; rep.) indicates in an abstract way this mapping,
leaving plenty of room to express the details of a representation

o Dirac-like notation reflects naturally a change of basis,

<Y|A>=/do<Y|o> (QA)

Willatt, Musil, MC, JCP (2019), arxiv:1807.00408; https://tinyurl.com/dirac- rep
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A Dirac notation for ML

features A representation
index target & nature

correlation
radial |nd|ces structure order ity
_ﬁ_
<n1l1;. Nyl k, A ,0 L0 )\u>
\ . Id \ rot
e
angular channels ! center symmetry

e Arepresentation maps a structure A (or one environment A;) to a vector
discretized by a feature index Q

o Bra-ket notation (Q|A; rep.) indicates in an abstract way this mapping,
leaving plenty of room to express the details of a representation

o Dirac-like notation reflects naturally a change of basis, the construction
of a kernel,

K(AA) = (AA) ~ / d0(Al0) (QIA)

Willatt, Musil, MC, JCP (2019), arxiv:1807.00408; https://tinyurl.com/dirac- rep
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A Dirac notation for ML

features A representation
index target & nature

correlation
radial |nd|ces structure order ity
_ﬁ_
<n1l1;. Nyl k, A ,0 L0 )\u>
\ . Id \ rot
e
angular channels ! center symmetry

e Arepresentation maps a structure A (or one environment A;) to a vector
discretized by a feature index Q

o Bra-ket notation (Q|A; rep.) indicates in an abstract way this mapping,
leaving plenty of room to express the details of a representation

o Dirac-like notation reflects naturally a change of basis, the construction
of akernel, or alinear model

E(A) = (EA) ~ / dO(£10) (QlA)

Willatt, Musil, MC, JCP (2019), arxiv:1807.00408; https://tinyurl.com/dirac- rep
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A phylogenetic tree of ML representations

Behler-Parrinello (2,3) aP”:’St(”tf)
" .. DeepMD (2,3) permutation
TP ER*% projection ‘GTTP (2,3) invariant @,
SNAP (4) . ;ntwonTé(t:ry polynomials (%3
P sharp . i Wasserstein
& limit histograms :
/’ functions 9 \ metric
blur permutations
smooth density (average) sorted )y (5
SOAP (3) correlation . distances BoB (2)
FCHL (2,3,4) featur permutations Sorted CM (2)
Wavelets (3) ?a ures (histogram)
NICE () fote Y \ atom Spectral FP (n)
density products
¢ P ) centred SPR'NTd(“)
- distributions _sorte
Diffraction FP _ molecular /e|genvalues
translations matrices Permutations
LODE (n) potential . _ (sorting)
symmetrized .~ fields global™ dae}gg;ty internal /n:)n-lmear
local field translations transform R coordinates functions
& rotations 3D Voxel Z matrix
T A molecular
other relation permutations téapostgtil(g)ﬁ: Lzl
family of features
named features (body order)
2,3,4: radial, angular, dihedrals !
Cartesian

n: n-body

n*: complete n-body linear basis coordinates

10 Michele Ceriotti cosmo.epfl.ch
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What do we want from a representation?

e Structure representations should: 1. be complete (injective); 2. reflect
basic physical symmetries; 3. be smooth, regular; 4. exploit additivity
o Cartesian coordinates fulfill only 1 and 3

translations ¢

T
R™,
# rotations .
completeness

structure space

; symmetry 2
*

feature space \
smoothness v‘

Musil et al., Chem. Rev. (2021)

1 Michele Ceriotti cosmo.epfl.ch Representations in atomistic ML

* < additivity




Additivity, and locality

o Arepresentation of a structure in terms of a sum over atom-centered
terms implies (For a linear model or an average kernel) an additive form of
the property

b4 T
|A) = Zz | Ai)
V(A4) = ZiGA V(A;) K(A,B) = Z” k(A;, B;)
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Additivity, and locality

o Arepresentation of a structure in terms of a sum over atom-centered
terms implies (For a linear model or an average kernel) an additive form of
the property

e Additivity and locality lead to transferable models with a divide and
conquer structure
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Additivity, and locality

o Arepresentation of a structure in terms of a sum over atom-centered
terms implies (For a linear model or an average kernel) an additive form of
the property

o Additivity and locality lead to transferable models with a divide and
conquer structure
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Symmetrized field construction

e Start from a non-symmetric representation (Cartesian coordinates)

13

Michele Ceriotti cosmo.epfl.ch

A=

C 0.00 0.00 0.00
C 0.00 1.00 0.00
B 1.00 2.00 0.00

willatt, Musil, MC, JCP (2019)
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http://dx.doi.org/10.1063/1.5090481

Symmetrized field construction

e Start from a non-symmetric representation (Cartesian coordinates)
o Define a decorated atom-density |p) (permutation invariant)

13

Michele Ceriotti cosmo.epfl.ch

(ar|p) = ZZ g(r —14)daa,
C)
IN) Il
B) H

willatt, Musil, MC, JCP (2019)
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Symmetrized field construction

e Start from a non-symmetric representation (Cartesian coordinates)

o Define a decorated atom-density |p) (permutation invariant)

o Translational average of a tensor product |p) ® |p) yields atom-centred
(and tinvariant) |p;)

willatt, Musil, MC, JCP (2019)
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A universal feature construction

o Rotationally-averaged representations are essentially the same n-body
correlations that are used in statistical theories of liquids

0.5 1 1.5 2 25
rlag

(ar|p®T) = [ dR{arE|R|p;)

willatt, Musil, MC, JCP (2019); Bartok, Kondor, Csanyi PRB 2013
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A universal feature construction

o Rotationally-averaged representations are essentially the same n-body
correlations that are used in statistical theories of liquids

(aim1; 0«2@?“”@) O :
= [ dR(aim12|R|pi)(azr21’ (w)|R|pi)

willatt, Musil, MC, JCP (2019); Bartok, Kondor, Csanyi PRB 2013
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A universal feature construction

o Rotationally-averaged representations are essentially the same n-body
correlations that are used in statistical theories of liquids

|pi) pi) pi)

willatt, Musil, MC, JCP (2019); Bartok, Kondor, Csanyi PRB 2013
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A universal feature construction

o Rotationally-averaged representations are essentially the same n-body
correlations that are used in statistical theories of liquids

o Linear models built on [p;””; g — ¢) yield (v + 1)-body potential expansion
V(A,) = Z’/ V(Z) (I',j) + Z’/ V(3) (I','j7 I','k,w,'jk) -

__o4f

D
0%
o L
S

~—

—0.2f

~0.4f

Do v by 1y | T T T Y B

0 0.5 1 1.5 2 2.5
. r/ao
V(4;) = [dr(Vl|ar){ar|pPt) = 3, Va(rij)

Willatt, Musil, MC, JCP (2019); Drautz, PRB (2019); Glielmo, Zeni, De Vita, PRB (2018)
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Smooth overlap of atomic
positions: a worked example



Two-neighbors descriptors

e Construction of a three-body (v = 2) invariant atomic descriptor
@ Define relative position of neighbors (translation-invariant)

Iy
A, A,
{rji =Tr; — I‘Z‘} e Az

Bartok, Kondor, Csanyi, PRB (2013)
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Two-neighbors descriptors

e Construction of a three-body (v = 2) invariant atomic descriptor
@ Define relative position of neighbors (translation-invariant)
@ Positions are transformed in a neighbor density (permutation invariant)

(ax|p;) = ZjEAi Oaa; (X|Tji; 9)
(x|rji; 9) = g(x —1ji)

Bartok, Kondor, Csanyi, PRB (2013)
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Two-neighbors descriptors

e Construction of a three-body (v = 2) invariant atomic descriptor
@ Define relative position of neighbors (translation-invariant)
@ Positions are transformed in a neighbor density (permutation invariant)
© Symmetrize over rotations a tensor product of the neighbor densities

X I
.

(x; x| 4; pP%) = X

[ dR(x|RA; p;)(x'| RA; p;)

willatt, Musil, MC, JCP (2019)
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Two-neighbors descriptors

e Construction of a three-body (v = 2) invariant atomic descriptor
@ Define relative position of neighbors (translation-invariant)
@ Positions are transformed in a neighbor density (permutation invariant)
© Symmetrize over rotations a tensor product of the neighbor densities
@ This is equivalent to a function of two distances and one angle

‘@\331
N .
(:1:1,332,9\A p®2
de x1Ré|A; p;)

(x2R (&, cos O + &, sin 0)|4; p;)

willatt, Musil, MC, JCP (2019)
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Two-neighbors descriptors

e Construction of a three-body (v = 2) invariant atomic descriptor
@ Define relative position of neighbors (translation-invariant)
@ Positions are transformed in a neighbor density (permutation invariant)
© Symmetrize over rotations a tensor product of the neighbor densities
@ This is equivalent to a function of two distances and one angle
© g — ¢ limit = list of 2-neighbors tuples (r},;, i, Ty - T,i)

(a1; x93 0] A; 622) =
D ivin 0(@1 = 15,3)0(z2 — 7j3)
5(C089 — IA'jlz' . f‘jﬂ)

willatt, Musil, MC, JCP (2019)
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Two-neighbors descriptors

e Construction of a three-body (v = 2) invariant atomic descriptor
@ Define relative position of neighbors (translation-invariant)
@ Positions are transformed in a neighbor density (permutation invariant)
© Symmetrize over rotations a tensor product of the neighbor densities
@ This is equivalent to a function of two distances and one angle
© g — ¢ limit = list of 2-neighbors tuples (r},;, i, Ty - T,i)
@ Linear model = 3-body potential!

[ (V)15 22; 0) (w1; 03 0] A; 652)
Zj1j2 V(leiv Tjais fjli ' szi)

willatt, Musil, MC, JCP (2019)
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Density trick in an (nlm| basis

e The symmetrized correlations can be computed in closed form using a
discrete basis

o The neighbor density can be expanded on a basis of radial functions
(x|ny = Ra(x) and spherical harmonics (x|{m) = Y"(X)

(x[im)

(nlm|A; p;) =
[ dx(nla) (im0 (x| 4; )
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Density trick in an (nlm| basis

e The symmetrized correlations can be computed in closed form using a
discrete basis

o The neighbor density can be expanded on a basis of radial functions
(x|ny = Ra(x) and spherical harmonics (x|{m) = Y"(X)

o Spherical harmonics transform linearly under rotations based on Wigner
rotation matrices D' (R)

S G
> &5
‘ » ‘ R|lm) = A
2 Do (Rl
(nlm; n'l ’\A pP?) = )
[ dR(nlm|RA; p;)(n'l'm’|RA; p;)
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Density trick in an (nlm| basis

e The symmetrized correlations can be computed in closed form using a
discrete basis

o The neighbor density can be expanded on a basis of radial functions
(x|ny = Ra(x) and spherical harmonics (x|{m) = Y"(X)

o Spherical harmonics transform linearly under rotations based on Wigner
rotation matrices D' (R)

o Orthogonality of Wigner matrices yields the SOAP powerspectrum

de Zkk’ D'lmk(R)valz’k’(R) X
011/ O Ok e/

A

F3a

(nn'1] A; pP?) =
melm\A; pi)(n'lm|A; p;)
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There are more things in
heaven and earth, Horatio, than
those transforming like a scalar



Machine-learning for tensors

o What if we want to learn vectors or general tensors? We need features
that are equivariant to the tensor under rotations.

d, (A7) = / d0(d|Q) (QlA: pF" )

d. (Ra) = [ d(d|0) (QIRA: 47 a)

&R

Glielmo, Sollich, De Vita, PRB (2017); Grisafi, Wilkins, Csanyi, & MC, PRL (2018); Veit et al., JCP (2020)
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Machine-learning for tensors

o What if we want to learn vectors or general tensors? We need features
that are equivariant to the tensor under rotations.

d. (A) = / d0(d|Q) (QlA: pF" )

d, (RA}) = / dQ(d|Q) S Ruar (QA P75 0") = 3~ Ruc i (A7)

&R

Glielmo, Sollich, De Vita, PRB (2017); Grisafi, Wilkins, Csanyi, & MC, PRL (2018); Veit et al., JCP (2020)
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Machine-learning for tensors

o What if we want to learn vectors or general tensors? We need features
that are equivariant to the tensor under rotations.

d. (A) = / dQ(d|Q) (QlA: 77" a)

d. (Ra)) = / dQ(d|Q) >~ Ruar (QIA pf"; /) = D Ruardur (4)

hasas SRR TS 0 ) TALAAR-
5A . -0.65 loss ®

0

Partial charge / e

Vector Scalar Combined

Veit, Wilkins, Yang, DiStasio, MC, JCP (2020)
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Machine-learning for tensors

o What if we want to learn vectors or general tensors? We need features
that are equivariant to the tensor under rotations.

A) = / d0(d|Q) (QlA: pF" )

/dod\ Z « (R) (1A 07 )

Grisafi, Wilkins, Csanyi, & MC, PRL (2018); Willatt, Musil, & MC, JCP (2019)
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A hierarchy of equivariant features

e Equivariant N-body features transform like angular momenta

(Q|RA; p&7; Au) ~ ZDW ) (QIA; p2¥; M)

e Recursive construction based on sums of angular momenta and an
expansion of the atom density

(112" s = (i (=) i)

(s m ks nlk|pP¢ Y0 =
ST nlpfTitm) (kP k) (Im: kgl

qm

o Can be used to compute efficiently invariant features [p*”;00)

Nigam, Pozdnyakov, MC, JCP (2020); https://github.com/cosmo-epfl/nice
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NICE features for ML

e Problem: number of features grows exponentially with v
o Solution: N-body iterative contraction of equivariants (NICE)
o After each body order increase, the most relevant features are selected and
used for the next iteration

<n|pl®llm body order (NY; nlk|p®”+1)\p>

iteration

4

contraction

(N¥[p§"kq)

(nlk|
[Auo)

(N <Nu+1 ‘p?wrl)\@

Nigam, Pozdnyakov, MC, JCP (2020); https://github.com/cosmo-epfl/nice
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NICE features for ML

e Problem: number of features grows exponentially with v
o Solution: N-body iterative contraction of equivariants (NICE)

o After each body order increase, the most relevant features are selected and
used for the next iteration

o Systematic convergence with v and contraction truncation

— ) =] — p=3 = NICE full
— P =2 e— P =4 = NN
[ JER J .-....-.................................. I
c,,;g._.. : g
? 104 g
2} ] v
2 @
[}
E
103 104 10°
Ntrain

Nigam, Pozdnyakov, MC, JCP (2020); https://github.com/cosmo-epfl/nice
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Comparing representations



Measuring feature spaces

o General problem: how do we compare information content of different
choices of features? How to compare metrics and kernels?

o Feature space Reconstruction Error (FRE) measures the
linearly-embeddable mutual information. Locally-linear and kernelized
extensions also available

GFRE(F - F/)= min |Xz — XzP|

PER"F X NF/
F'

F!
0O—0—o0— P
z2 u

Goscinski, Fraux, MC, MLST (2021)
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Measuring feature spaces

o General problem: how do we compare information content of different
choices of features? How to compare metrics and kernels?

o Feature space Reconstruction Error (FRE) measures the
linearly-embeddable mutual information. Locally-linear and kernelized
extensions also available

GFRE(F - F/)= min |Xz — XzP|

PER"F X NF/
F'

Prr
V' i
f’
3 e e
u

GFRE(F, F')

Goscinski, Fraux, MC, MLST (2021)

23 Michele Ceriotti cosmo.epfl.ch Representations in atomistic ML


http://dx.doi.org/10.1088/2632-2153/abdaf7

Measuring feature spaces

o General problem: how do we compare information content of different
choices of features? How to compare metrics and kernels?

o Feature space Reconstruction Error (FRE) measures the
linearly-embeddable mutual information. Locally-linear and kernelized
extensions also available

GFRE(F - F/)= min |Xz — XzP|

PER"F X NF/
F'

T Prr u

GFRE(F, F)

Goscinski, Fraux, MC, MLST (2021)
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Measuring feature spaces

o General problem: how do we compare information content of different
choices of features? How to compare metrics and kernels?

o Feature space Reconstruction Error (FRE) measures the
linearly-embeddable mutual information. Locally-linear and kernelized
extensions also available

GFRE(F — F')= min |Xz — XzP|

PER"F XNx/
carbon random methane
1.0t 10r FcF_1 '
—— GFRE(SOAP, BPSF) = FLF
0.751 —H GFRE(BPSF, SOAP) 075 i SOAP vs
L] BPSF
i
0.5¢ 0.5t o FCE
' cF
F=F"0 GFRE(FF) 1
0.25¢ 0.25) P
0.0t 0.0t
11 61 181 377 699 35 101 534 1147
1264 180 384 700 36 102 540 1152
m|
number of features "=
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Are these representations complete?

e Itiis well-known that 2-body correlations are ambiguous: one can build
tetrahedra with same pair distances that are different

Boutin, Kemper, Ann. Adv. Math. (2004); Figure from Barték, Kondor, Csényi, PRB (2013)
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Are these representations complete?

e Itiis well-known that 2-body correlations are ambiguous: one can build
tetrahedra with same pair distances that are different

e Surprise: neither are 3 (and 4!') body feature! Problem gets important as
model accuracy is increased

A = (agz,ay,0)
B, B" = (£by, +by,b.)
Cc* = (0, £cy, c2)

T

Pozdniakov, Willatt, Barték, Ortner, Csanyi, MC PRL (2020)
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Are these representations complete?

e Itiis well-known that 2-body correlations are ambiguous: one can build
tetrahedra with same pair distances that are different

e Surprise: neither are 3 (and 4!') body feature! Problem gets important as
model accuracy is increased
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Pozdniakov, Willatt, Barték, Ortner, Csanyi, MC PRL (2020)
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Symmetry and sensitivity

e Localcharacterization of features based on the SVD of the Jacobian

duz
gdll3

du3
gdUQ

Parsaeifard et al., MLST (2021); Pozdnyakov et al., Open Research Europe (2021)
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Symmetry and sensitivity

e Localcharacterization of features based on the SVD of the Jacobian

o Symmetric features must have low-rank J environments, connected with
discrete symmetries

W, W' = (fwy, wy, w,)
Cc* = (0, +ey, C2)

Parsaeifard et al. Pozdnyakov et al., Open Research Europe (2021)
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Symmetry and sensitivity

25

e Localcharacterization of features based on the SVD of the Jacobian

o Symmetric features must have low-rank J environments, connected with
discrete symmetries

o Interesting twist: degenerate manifolds crossing — spurious singularities
0E7), v > 2
AT

W, W' = (fwy, wy, w,)
Cc* = (0, +ey, C2)

Parsaeifard et al. Pozdnyakov et al., Open Research Europe (2021)
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Symmetry and models

e Zeros in the Jacobian singular value spectrum enforce the correct
extremal behavior for symmetric structures
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Pozdnyakov et al., Open Research Europe (2021)
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Symmetry and models

e Zeros in the Jacobian singular value spectrum enforce the correct
extremal behavior for symmetric structures

e ... but for degenerate structures: artificial zero-force points!
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Symmetry and models

e Zeros in the Jacobian singular value spectrum enforce the correct
extremal behavior for symmetric structures

e ... but for degenerate structures: artificial zero-force points!
o Deep consequences for equivariant models
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Nigam, Willatt, MC, JCP (2021)
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Symmetry and models
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e Zeros in the Jacobian singular value spectrum enforce the correct
extremal behavior for symmetric structures

e ... but for degenerate structures: artificial zero-force points!
o Deep consequences for equivariant models
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Symmetry and models

e Zeros in the Jacobian singular value spectrum enforce the correct
extremal behavior for symmetric structures

e ... but for degenerate structures: artificial zero-force points!
o Deep consequences for equivariant models
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How about graph
convolution schemes?



Basic distance graph convolution

o Atoms are nodes in a fully-connected network. Edges are decorated by
(Functions of) interatomic distances r;

SchNET: Schiitt et al., JCP (2018)
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Basic distance graph convolution

e Atoms are nodes in a fully-connected network. Edges are decorated by
(Functions of) interatomic distances r;

e Each node is decorated by the nature of its neighbors and their distance

h(A,') = (ai, {(aj’ rl/)})
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Basic distance graph convolution

o Atoms are nodes in a fully-connected network. Edges are decorated by
(Functions of) interatomic distances r;

e Each node is decorated by the nature of its neighbors and their distance
h(A) = (a;, {(q;. 7y)})

e The multiset of neighbors and edges is hashed, and used as a label to
describe the nodes. The process can be iterated
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Graph convolution, pros and cons

o Bad news: there are known discrete graphs that cannot be distinguished
by this procedure (W-L test)

(b) Dodecahedrane.
(a) Decaprismane.

Sato, arxiv:2003.04078
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Graph convolution, pros and cons

o Bad news: there are known discrete graphs that cannot be distinguished
by this procedure (W-L test)

e Good news: things seem to be fine for molecular graphs (fully-connected,
distance-decorated 3D point clouds); GC resolves all known
counterexamples of atom-centered representations

Bartok et al. PRB (2013); Pozdnyakov et al. PRL (2020)
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A counterexample for distance-based CNN

o A family of 3D point clouds with degenerate pairs for GCNN. Key idea: the
distance matrix is identical, except for a swap

b AT N CrCHV VW e
H c
ct’ Y
%
v
> w
! w —a
= ) A- cclvvww ©
i c-' c-
: E , o
@\ Qy & ?
v
! W

v

C* = (p/4, ¢y, %c2)
W = (p/2,wy,w,)
V= (’1,7:1.,/(),‘(1’ 0)
o= (1)/2 + g, Dy, _Dz)
Pozdnyakov, MC, arXiv:2201.07136 (2022)
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A counterexample for distance-based CNN

30

o A family of 3D point clouds with degenerate pairs for GCNN. Key idea: the
distance matrix is identical, except for a swap

e Can be folded to give finite 3D structures
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Pozdnyakov, MC, arXiv:2201.07136 (2022)
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A counterexample for distance-based CNN

30

o A family of 3D point clouds with degenerate pairs for GCNN. Key idea: the
distance matrix is identical, except for a swap

e Can be folded to give finite 3D structures

o Hard limit to the accuracy for plausible molecular geometries
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Pozdnyakov, MC, arXiv:2201.07136 (2022)
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A counterexample for distance-based CNN

o A family of 3D point clouds with degenerate pairs for GCNN. Key idea: the
distance matrix is identical, except for a swap

e Can be folded to give finite 3D structures

o Hard limit to the accuracy for plausible molecular geometries

e Modern architectures that use angular/directional information (and

simple models based on [p{?)) are immune

Pozdnyakov, MC, arXiv:2201.07136 (2022)
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Outlook



Towards a rigorous theory of atomistic ML

e Atomistic simulations have a long tradition of fitting potentials, giving a
framework to understand the implication of representations and models
to machine learn atomic-scale properties

o Locality, symmetry and equivariance are key elements to incorporate
domain priors. Non-locality: another interesting story!

o Adifferent perspective on descriptive power and transferability. Relevant
for general geometric ML?

e A systematic theory of atom-centered representations. Extend to
message-passing architectures?
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Computational science & modeling @ EPFL

cosmo.epfl.ch W Follow @lab_COSMO

MARVEL sz,
ceed
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Computational science & modeling @ EPFL

cosmo.epfl.ch W Follow @lab_COSMO

33 Michele Ceriotti cosmo.epfl.ch Representations in atomistic ML


http://cosmo.epfl.ch
https://twitter.com/lab_cosmo?ref_src=twsrc%5Etfw

A software stack For atomistic machine learning

o Integrating ML and atomistic simulations: from representations to
models to advanced MD

o Interoperability and data sharing with the rest of the ecosystem

Quantum i-Pl: a universal force
ESPRESSO engine for advanced LAMMPS
(PI)MD simulations Plumed
model
CP2K evaluation trajectory
visualization
librascal:

features and structure-property

(sparse) kernel explorer
models feature data
calculation analytics
n2p2

NICE L
scikit-cosmo: AiiDA
sklearn-style signac
TENSOAP python library
QuIP of ML utilities

https://github.com/lab-cosmo/
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C++/python h chen';isbcfope:

library for ; chemiscope BEISHSES

density-based@rqs al featurd P browser-based
selection



https://github.com/lab-cosmo/
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