
Building sequence
tagging approach to
Grammatical Error Correction and
Text Simplification
Oleksandr Skurzhanskyi, Kostia Omelianchuk, Jan 28, 2022

Outline of the talk

● Introduction
○ Few words about us
○ GEC task overview

● GEC task

● Sequence tagging approach

● GECToR for GEC

● Reusing GECToR on Text
Simplification Task

● Q&A

Who we are?

Who we are?

Oleksandr Skurzhanskyi, Applied

Research Scientist, Grammarly

Kostia Omelianchuk, Applied

Research Scientist, Grammarly

What is Grammarly?

Grammarly’s AI-powered writing
assistant helps you make your
communication clear and effective,
wherever you type.

GEC task
overview

The goal of GEC task is to produce the grammatically correct

sentence from the sentence with mistakes. Here we’re talking

about English language specifically.

Example:

Source: He go at school.

Target: He goes to school.

GEC: Grammatical Error Correction

GEC: Data

GEC: Shared task

- CoNLL-2014 (the test set is composed of 50 essays written

by non-native English students; metric - M2Score)

- BEA-2019 (new data; the test set consists of 4477

sentences; metric - Errant)

GEC: Progress

Dominant approach in 2019

● GEC was treating as machine translation problem mostly

● Seq2Seq models are status quo for most sentence-level

transduction tasks

● Drawbacks
○ Require large amounts of annotated parallel data - slow and expensive

○ Autoregressive decoding - not performant

○ Not controllable or explainable - unfit for real-world products

 The cat sat on mat The cat sat on the matSeq2Seq
Model

Sequence
Tagging

This work was done in fall 2019

This part of the presentation is based on the paper written by:

- Kostiantyn Omelianchuk
- Oleksandr Skurzhanskyi
- Vitaliy Atrasevych
- Artem Chernodub

https://aclanthology.org/2020.bea-1.16/

We approach the GEC task as a sequence tagging problem.

In this formulation for each token in the source sentence a GEC

system should produce a tag (edit) which represent a required

correction operation for this token.

For solving this problem we use non-autoregressive

transformer-based model.

Sequence Tagging

keep the current token
unchanged

APPEND_ti

DELETE

REPLACE_ti

KEEP

delete current token

append new token ti

replace the current token
with token ti

SPLIT

MERGE

NOUN
NUMBER

CASE

VERB
FORM

Basic transformations

change the case of the
current token

g-transformations

merge the current and
the next token

split the current token
into two

convert singular nouns
to plurals and vice versa

change the form of
regular/irregular verbs

Token-level transformations
 A ten years old boy go school

 A ⇨ A:

 ten ⇨ ten, -: ,

 years ⇨ year, -:

 old ⇨ old:

 go ⇨ goes, to:

school ⇨ school, .:

A ten years old boy go school
A ten years old boy go school

$KEEP

$MERGE_HYPH

$NOUN_NUMBER_SINGULAR

$VERB_FORM_VB_VBZ

$APPEND_{.}

$KEEP

$MERGE_HYPH

$KEEP

$APPEND_{to}

$KEEP

A ten-year-old boy goes to school.

1. Generating tags is fully independent and easy to parallelize

operation.

2. Smaller output vocabulary size compare to seq2seq

models.

3. Less usage memory and faster inference compare to

encoder-decoder models.

Sequence Tagging: Pros

Sequence Tagging: Cons

1. Independent generating of tags relies on assumption that

errors are independent between each other.

2. Word reordering is tricky for this architecture.

First baselines

Academia vs Industry

- different data (both training/evaluation)

- latency/throughput matters

- aggressive deadlines

Baseline architecture

Encoder

Input sentence

Error
replacement
linear layer

Predicted tags

Corrected

sentence

Error
detection

linear layer
Postprocess

Error insertion
linear layer(s)

Embeddings

 Baseline hyperparameters

- Emedings (trainable random, glove, bert, distill-bert)

- Encoder (cnn, lstm, stacked-lstm, pass_through, transformers)

- Output layers (1-2 for insertions, 1 for replacement, 1 for

detection)

- Output vocabulary size (100-50000)

- Other (dropouts, training schedule, tp/tn ratio, etc)

 Baseline results

Baseline/m2 score CoNLL-2014 (test)
Stacked LSTM (vocab_size=1000) 30.5
Stacked LSTM (vocab_size=1000; + g-transformations) 35.6
Stacked LSTM (vocab_size=1000; + g-transformations; +
BERT embeddings) 46

Academic SOTA (single model) [2019] 61.3

https://arxiv.org/pdf/1909.00502.pdf

 Insights

- Increasing size of output vocabulary did not help

- Adding BERT as emdebbings helped a lot

- Training BERT with small batch_size failed (didn’t converge);

training with bigger batches required gradient accumulating

Similar approach

PIE paper

Our SOTA on NUCLE: 46

Transformers

 Transformer

Attention Is All You Need

(Vaswani et al. 2017)

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Multihead attention

 BERT-like architecture

BERT (Devlin et al. 2018)

https://arxiv.org/abs/1810.04805

Training
transformers

huggingface / transformers

https://github.com/huggingface/transformers

Thing that made our transformers work:

● small learning rate (1e-5)

● big batch size (at least 128 sentences)

or use gradient accumulation

● freeze BERT encoder first and train only linear layer,

then train jointly

Transformers recipe

*on CoNLL-2014 (test)

BERTology works

LSTM 35.6

LSTM + BERT
embeddings

46.0

DistillBERT 52.8

BERT-base 57.3

Additional tricks

 A ten years old boy go school (zero corrections)

Iteration 1: A ten-years old boy goes school (2 total corrections)

Iteration 2 A ten-year-old boy goes to school (5 total corrections)

Iteration 3: A ten-year-old boy goes to school. (6 total corrections)

Iteration 2

Iterative Approach

Iteration 1

Iteration 3

Sequence

GECToR model: iterative
pipeline

Encoder (transformer-based)

Input sentence

Error correction
linear layer

Predicted tags

Corrected

sentence

Error detection
linear layer

Postprocess

Repeat N times

● Training is splitted in N stages

● Each stage has its own data

● Each stage has its own hyperparameters

● On each stage model is initialized by the best weights of

previous stage

Staged training

I. Pre-training on synthetic
errorful sentences as in
(Awasthi et al., 2019)

II. Fine-tuning on errorful-only
sentences

III. Fine-tuning on subset of
errorful and errorfree
sentences as in
(Kiyono et al., 2019)

Training stages

Dataset # sentences % errorful
sentences

PIE-synthetic 9,000,000 100.0%

Lang-8 947,344 52.5%

NUCLE 56,958 38.0%

FCE 34,490 62.4%

W&I+LOCNESS 34,304 67.3%

https://arxiv.org/abs/1910.02893
https://arxiv.org/abs/1909.00502

I. Pre-training on synthetic
errorful sentences as in
(Awasthi et al., 2019)

II. Fine-tuning on errorful-only
sentences(new!)

III. Fine-tuning on subset of
errorful and errorfree
sentences as in
(Kiyono et al., 2019)

Training stages

Dataset # sentences % errorful
sentences

PIE-synthetic 9,000,000 100.0%

Lang-8 947,344 52.5%

NUCLE 56,958 38.0%

FCE 34,490 62.4%

W&I+LOCNESS 34,304 67.3%

https://arxiv.org/abs/1910.02893
https://arxiv.org/abs/1909.00502

I. Pre-training on synthetic
errorful sentences as in
(Awasthi et al., 2019)

II. Fine-tuning on errorful-only
sentences

III. Fine-tuning on subset of
errorful and errorfree
sentences as in
(Kiyono et al., 2019)

Training stages

Dataset # sentences % errorful
sentences

PIE-synthetic 9,000,000 100.0%

Lang-8 947,344 52.5%

NUCLE 56,958 38.0%

FCE 34,490 62.4%

W&I+LOCNESS 34,304 67.3%

https://arxiv.org/abs/1910.02893
https://arxiv.org/abs/1909.00502

● Adam optimizer (Kingma and Ba, 2015);
● Early stopping after 3 epochs of 10K

updates each w/a improvement;
● Epochs & batch sizes:

○ Stage I (pretraining):
 batch size=256, 20 epochs

○ Stages II, III (finetuning):
batch size=128, 2-3 epochs

Training details

Training
stage #

CoNLL-2014
(test)*, F0.5

BEA-2019
(dev)*, F0.5

I 49.9 33.2

II 59.7 44.4

III 62.5 50.3

III + Inf.
tweaks 65.3 55.5

* Results are given for GECToR (XLNet).

https://arxiv.org/abs/1412.6980

Inference tweaks 1

By increasing probability of $KEEP tag we can force model to make

only confident actions.

In such a way, we can increase precision by trading recall.

Inference tweaks 2

We also compute the minimum probability of incorrect class across

all tokens in the sentence.

This value (min_erorr_probability) should be higher than threshold in

order to run next iteration.

BERT family

Varying encoders from
pretrained transformers

* Training was performed on data from training stage II only. ** Baseline.

Encoder
CONLL-2014 (test) BEA-2019 (test)

P R F0.5 P R F0.5

LSTM** 51.6 15.3 35.0 - - -

ALBERT 59.5 31.0 50.3 43.8 22.3 36.7

BERT 65.6 36.9 56.8 48.3 29.0 42.6

GPT-2 61.0 6.3 22.2 44.5 5.0 17.2

RoBERTa 67.5 38.3 58.6 50.3 30.5 44.5

XLNet 64.6 42.6 58.6 47.1 34.2 43.8

https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1810.04805
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1906.08237

Varying encoders from
pretrained transformers

* Training was performed on data from training stage II only. ** Baseline.

Encoder
CONLL-2014 (test) BEA-2019 (test)

P R F0.5 P R F0.5

LSTM** 51.6 15.3 35.0 - - -

ALBERT 59.5 31.0 50.3 43.8 22.3 36.7

BERT 65.6 36.9 56.8 48.3 29.0 42.6

GPT-2 61.0 6.3 22.2 44.5 5.0 17.2

RoBERTa 67.5 38.3 58.6 50.3 30.5 44.5

XLNet 64.6 42.6 58.6 47.1 34.2 43.8

https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1810.04805
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1906.08237

Model inference
time

Speed comparison

● NVIDIA Tesla V100

● CoNLL-2014 (test)

● single model

● batch size=128

Speed comparison

Final results

Big picture

Results [2019]

Results [2022; CoNLL-2014 (test)]

Source: nlpprogress.com [link]

http://nlpprogress.com/english/grammatical_error_correction.htmlhttp://nlpprogress.com/english/grammatical_error_correction.html

Results [2022; BEA-2019 (test)]

Source: nlpprogress.com [link]

http://nlpprogress.com/english/grammatical_error_correction.htmlhttp://nlpprogress.com/english/grammatical_error_correction.html

Text
Simplification

This work was done in 2020

This part of the presentation is based on the Text Simplification

by Tagging paper written by:

- Kostiantyn Omelianchuk

- Oleksandr Skurzhanskyi

- Vipul Raheja

https://aclanthology.org/2021.bea-1.2/
https://aclanthology.org/2021.bea-1.2/

Text Simplification

● consists of modifying the content and structure of a text in order to make it
easier to read and understand, while preserving its main idea and
approximating its original meaning

● could benefit low literacy readers, English learners, children, and people with
reading disabilities

● most commonly-used automatic metrics are:

○ SARI
○ FKGL
○ BLEU

Text Simplification

Source Target

Simplification All students when attending a university must
adhere to these guidelines.

All students when going into a university must
follow these rules.

GEC She see Tom is catched by policeman in park
at last night.

She saw Tom caught by a policeman in the park
last night.

● Training data: only 2 publicly available training datasets:

○ WikiLarge (300k) is a set of automatically aligned complex-simple sentence pairs
from English Wikipedia

○ Newsela includes thousands of news articles professionally leveled to different
reading complexities. Has legal constraints to use it for public research.

● Evaluation: unreliable metrics (SARI, FKGL), like for almost
every text generation task

● Adapt GECToR approach from GEC to Text Simplification

Challenges

● Edit-Tag Vocabulary
○ Tags overlap between tasks 92% allow to use GEC tags

● Data Preprocessing
○ Tried special preprocessing for Simplification task which was beneficial

● GEC Pretraining
○ Explored GEC initialization for Text Simplification

○ GECToR codebase is outdated (transformers 2.*) -> updated the code

○ Tokenization in GECToR was incorrect -> fixed

● Data Augmentations (details in next slide)

● Tagging models
○ Used RoBERTa-BASE for Text Simplification (vs. an ensemble of BERT, XLNET and

RoBERTa used by GECToR)

● Inference Tweaks
○ $DELETE is highly important tag -> designed a new inference tweak for it

TST: GECToR for Simplification

● Standard Train/Test sets for Text Simplification

● WikiAll: 384k pairs collected from English Wikipedia-Simple

Wikipedia

○ WikiSmall (88k Pairs)

○ WikiLarge (296k Pairs)

● WikiBT: Back-translated WikiAll (en-de and en-fr)

● WikiEns: Ensemble Distillation of 3 models

○ TST on WikiAll (randomly initialized)

○ TST-GEC on WikiAll (TST fine tuned on GEC task)

○ TST on WikiAll + WikiBT

● Final training set: WikiAll (384k Pairs) + WikiEns (384k Pairs)

TST: Data Augmentations

● Metrics depend a lot on tokenization. 1+ points could be achieved by simply
changing tokenization method

● SARI is calculated differently for the corpus-level:

○ It’s not just averaged of the sentence-level scores: statistics should be
gathered on
the whole corpus, then calculated

○ F1 is used for deletion operation

● BLEU is bad for the Text Simplification evaluation

● EASSE is a great evaluation package

Results: Evaluation Metrics

https://github.com/feralvam/easse

Results: Simplification Quality

TurkCorpus ASSET WikiSmall

SOTA on WikiSmall, near-SOTA on TurkCorpus and ASSET

Results: Readability

TurkCorpus ASSET WikiSmall

SOTA on ASSET, Near-SOTA on TurkCorpus and WikiSmall

Results: Ablation Study

Average SARI and FKGL scores

All adaptation steps progressively enhance the system

Reusable artifacts

Repository & models

Repository & models

Links

● GEC paper

● Text Simplification paper

● The code

https://aclanthology.org/2020.bea-1.16/
https://aclanthology.org/2021.bea-1.2/
https://github.com/grammarly/gector

Questions?

