G grammarly

Building sequence
tagging approach to
Grammatical Error Correcti

Text Simplification

Oleksandr Skurzhanskyi, Kostia Omelianchuk, Jan 28, 2022

Outline of the talk

Introduction

o Few words about us
O GEC task overview

GEC task
Sequence tagging approach
GECToR for GEC

Reusing GECToR on Text
Simplification Task

Q&A

Who we are?

Who we are?

Oleksandr Skurzhanskyi, Applied

. Research Scientist, Grammarly

Kostia Omelianchuk, Applied

Research Scientist, Grammarly

What is Grammarly?

Grammarly’s Al-powered writing
assistant helps you make your
communication clear and effective,
wherever you type.

GEC task
overview

GEC: Grammatical Error Correction

The goal of GEC task is to produce the grammatically correct
sentence from the sentence with mistakes. Here we’re talking

about English language specifically.

Example:
Source: He go at school.

Target: He school.

GEC: Data

TABLE 1
Statistics and properties of public GEC datasets.
Corpus Component # # # Sents # Error Error | Proficiency | Topic L1
Sents | Tokens | Chars | Changed | Ref | Type Type
per
sent
NUCLE - 57k 1.16M 115 38% 2 | minimal | Labeled Simplex Simplex | Simplex
Train 28k 455k
FCE Dev 2.1k 35k 74 62% 1 | minimal | Labeled | Simplex Diverse | Diverse
Test 2.7k 42k
Lang-8 - 1.04 | 11.86 1-8 | fluency | None Diverse Diverse | Diverse
M M 56 2%
JFLEG Dev 754 14k 94 86 4 | fluency | None Diverse Diverse | Diverse
Test 747 13k
Train 343k | 628.7k 60 67% 1
W&l Dev 34k | 63.9% A 6% 1 E Labeled | Diverse Diverse | Diverse
Test 3.5k | 625k - - 5
LOCNESS Dev 1k 23.1k 123 52% 1 -
Test 1k 23.1k - - 5 Labeled Diverse Diverse | Sinplex

GEC: Shared task

- CoNLL-2014 (the test set is composed of 50 essays written
by non-native English students; metric - M2Score)
- BEA-2019 (new data; the test set consists of 4477

sentences; metric - Errant)

GEC: Progress

6.2.1 Development of Approaches

—&—SMT --#--NMT @SMT+NMT

65

60

55

45

40

35
35.01

[28][27]129][47][33] [34][45] [35] [31] [36][32] [37][49] [38] [50] [39] [53][67] [56][66] [69]
Approaches

Fig. 4. Development of SMT based approaches and NMT
based approaches.

Dominant approach in 2019

e GEC was treating as machine translation problem mostly

e Seg2Seq models are status quo for most sentence-level

transduction tasks

Seq2Seq

The cat sat on mat Model

The cat sat on the mat

e Drawbacks

o Require large amounts of annotated parallel data - slow and expensive
o Autoregressive decoding - not performant

Not controllable or explainable - unfit for real-world products

Sequence
Tagging

This work was done in fall 2019

This part of the presentation is based on written by:

Kostiantyn Omelianchuk
Oleksandr Skurzhanskyi
Vitaliy Atrasevych
Artem Chernodub

https://aclanthology.org/2020.bea-1.16/

Sequence Tagging

We approach the GEC task as a sequence tagging problem.
In this formulation for each token in the source sentence a GEC
system should produce a tag (edit) which represent a required

correction operation for this token.

For solving this problem we use non-autoregressive

transformer-based model.

Basic transformations

m keep the current token

unchanged

delete current token

append new token t,

re.place the current token
= with token t,

g-transformations

- change the case of the

current token
w merge the current and

the next token

SPLIT §pl|t the current token
into two

NOUN convert singular nouns

NUMBER to plurals and vice versa
VERB change the form of
FORM regular/irregular verbs

Token-level transformations

A ten years old boy go school

A A: @
old © old: @
school ® school, .: @

A ten-year-old boy goes to school.

Sequence Tagging: Pros

1. Generating tags is fully independent and easy to parallelize
operation.

2. Smaller output vocabulary size compare to seg2seq
models.

3. Less usage memory and faster inference compare to

encoder-decoder models.

Sequence Tagging: Cons

1. Independent generating of tags relies on assumption that
errors are independent between each other.

2. Word reordering is tricky for this architecture.

First baselines

Academia vs Industry

- different data (both training/evaluation)
- latency/throughput matters

- aggressive deadlines

Baseline architecture

Predicted tags

* 1)

)

\ 4

Postprocess

Error . . Error
Error insertion :
replacement : detection
: linear layer(s) :
linear layer linear layer
Encoder
Embeddings

L)

Input sentence

1)

—

Corrected

sentence

Baseline hyperparameters

- Emedings (trainable random, glove, bert, distill-bert)

- Encoder (cnn, Istm, stacked-Istm, pass_through, transformers)

- Output layers (1-2 for insertions, 1 for replacement, 1 for
detection)

- Output vocabulary size (100-50000)

- Other (dropouts, training schedule, tp/tn ratio, etc)

Baseline results

Baseline/m2 score

CoNLL-2014 (test)

Stacked LSTM (vocab_size=1000)

Stacked LSTM (vocab_size=1000; + g-transformations)

Stacked LSTM (vocab_size=1000; + g-transformations; +
BERT embeddings)

SOTA (single model) [2019]

30.5
35.6

46
61.3

https://arxiv.org/pdf/1909.00502.pdf

Insights

- Increasing size of output vocabulary did not help
- Adding BERT as emdebbings helped a lot
- Training BERT with small batch_size failed (didn’t converge);

training with bigger batches required gradient accumulating

Similar approach

Abstract

Wie present a Paralled iterative Edit [PIE) model
for the problem of local sequence transduction
arising in tasks like Grammatical error
correction (GEC). Recent approaches are based
on the popular encoder-decoder (ED) model for
seq2seq learning. The ED model sutc-
regressively captures full dependency amang

output tokens but is slow due to sequential
= decoding. The PIE model does parallet
[decoding, giving up the advantage of modelling
a5 full dependency in the autput, yet it achieves
fm—— accuracy competitive with the ED model for

four reasons: 1. Labeling sequences with edits

instead of generating sequences, 2. Iterative
refinement to capture mssed dependencies,
and 3. Rewiring a pre-trained language model
like BERT for edit predictions. Experiments on
tasks spanning GEC, OCR denoising and spell
correction demonstrate that the PIE model is an
accurate and significantly faster alternative,

Parallel Iterative Edit Models for
Local Sequence Transduction

Abhijeet Awasthi, Sunita Sarawagi, Rasna Goyal, Sabyasachi Ghosh, Vihari Piratla

PIE paper

& i
Corresp e

e.iith.ac.in , @ Awasthi_A_

Grammatical Error Correction made 5 to 15 times faster by sequence labeling with 71-

Standard Approach Highlights Local Sequence
Translate incorrect sequence to correct sequence using 1. Labeling with edits Transduction Problems
| Methods P R | Fys auto-regressive encoder decoder models instead of translation 1. Grammatical Error
1 | PIE 66.1 | 43.0 | 59.7 AR R Non-autoregressive, Correction
2 | — Synthetic training | 67.2 | 34.2 | 56.3 patalielpridicfona 2. Spell Correction
3| —Factorized-logits | 66.4 | 32.8 | 55.1 | .~ Xt %2 o %m L PISIISE | 5 ot -dencibing
4 —Append +Inserts | 57.4 | 42.5 | 53.6 Why explicitly generate the target sequence from scratch ? dependencies Key Property: Source and
5 —Transformations | 63.6 | 27.9 | 50.6 All we need is a few local edits to the input ! Rewiring BER"T for Target Sequence are generally not
6 | —LM Pre-init 48.8 | 183 | 36.6 Sequafics wditing oodieent
7 | PIE on BERT-Base | 67.8 | 34.0 | 56.6 | our Approach From translation to sequence labeling with edits

Labeling incorrect sequence with edits
Non-autoregressive Parallel Predictions

Original Problem: Translation
X He catched by policeman
Y He was caught by a policeman

Yy She | saw | Tom | caught by a policeman
f ? ! ! f | Modification: Sequence Editing
e C C C D REP(caught) APPENIXa) C X He catched by policeman len(x) # len{e) (:3_:)
€ COPY INS(was) REP(caught) COPY INS(a) COPY
h‘ n! h) h~l h5~ hE h?
i Simplification: Sequence Labeling
BERT Trick: Merge COPY INS(.) to form Append(.) !
OU r SOTA 0 n N U C LE: X she saw Tom| i catched by policeman X He catched by policeman len(x) = len(e) (22

LR Ps P P

€ Append(was) REP(caught) Append(a) COPY

Transformers

Transformer

Output
Probabilities

| Softmax__|
(.)
Add & Norm
Feed
Forward
4) Add & Norm
= _dd 5 Mo Mutti-Head
Feed Attention
Forward = S N x
]
Add & Norm
Nx
Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
, T , T, T
Coe——— J pr——)
Pasiticnal & ¢ Positional
Encoding y Encoding
Input Output
. Embedding Embedding
Attention Is All You Need T
Inputs Outputs

(Vaswani et al. 2017)

{shifted right)

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Multihead attention

<ped>
<ped>
<peds>
<ped>
<ped>
<ped>
<SO3>
HnoIp
alow
ssao0.d
Bunoa
Io
uoneusibal
oy
Bujew
600¢
aouls
SMe|
Mau
passed
aney
sjuswiwanob
ueduB WY
Jo
Auolew
e

ey
juds
sy

u

sl

1

ssao0ud
Bunoa
10
uonessibal
ay}

Bupjew D
6002

aouls

SME|
mau

passed
aAney
sjuawuianob
ueolBWY

J0

Auolew

e

jey}

juids

sy

ul

S|

H

BERT-like architecture

v () (o

Embedding Iy
to vocab +
softmax
[Classification Layer: Fully-connected layer + GELU + Norm]
([oo] [0. | [oo (0. | os |
A A r A A
()
Transformer encoder
& =/
Embedding T T T t T
Lw)] [we | [w | (s] [ws |

T] 1 T

BERT (Devlin et al. 2018) " e W3 W4 Ws

https://arxiv.org/abs/1810.04805

Training
transformers

huggingface / transformers

® Watch 790 ~ % Fork 13.5k v~ Starred 57k

https://github.com/huggingface/transformers

Transformers recipe

Thing that made our transformers work:

e small learning rate (1e-5)
e big batch size (at least 128 sentences)
or use gradient accumulation
e freeze BERT encoder first and train only linear layer,

then train jointly

BERTology works

LSTM 35.6
LSTM + BERT 46.0
embeddings
DistillBERT 52.8
BERT-base 57.3

*on CoNLL-2014 (test)

Additional tricks

Iterative Approach

e A ten years old boy go school (zero corrections)

A ten-years old boy goes school (2 total corrections)
A ten-year-old boy goes to school (5 total corrections)
|

CeliO R A ten-year-old boy goes to school. (6 total corrections)

GECToR model: iterative

pipeline

Predicted tags

* *

Error correction Error detection
linear layer linear layer

.

* *

Postprocess

—

Encoder (transformer-based)

1)

1)

Input sentence

L}

Repeat N times

Corrected

sentence

Staged training

e Training is splitted in N stages

e Each stage has its own data

e Each stage has its own hyperparameters

e On each stage model is initialized by the best weights of

previous stage

Training stages

% errorful
..) Dataset # sentences i
I. Pre-training on synthetic sentences

errorful sentences as in
(Awasthi et al., 2019)
Il. Fine-tuning on errorful-only

PIE-synthetic 9,000,000 100.0%

Lang-8 947,344 52.5%
sentences
Ill. Fine-tuning on subset of NUCLE 56,958 38.0%
errorful and errorfree
sentences as in FCE 34,490 62.4%

(Kivono et al., 2019)

W&I+LOCNESS 34,304 67.3%

https://arxiv.org/abs/1910.02893
https://arxiv.org/abs/1909.00502

Training stages

% errorful
o) Dataset # sentences i
|. Pre-training on synthetic sentences
erroriul §entences asin PIE-synthetic 9,000,000 100.0%
(Awasthi et al., 2019)
Il. Fine-tuning or'1 errorful-only Lang-8 947 344
sentences™")
Ill. Fine-tuning on subset of NUCLE 56,958
errorful and errorfree
sentences as in FCE 34,490

(Kiyono et al., 2019)

W&I+LOCNESS 34,304

https://arxiv.org/abs/1910.02893
https://arxiv.org/abs/1909.00502

Training stages

% errorful
o) Dataset # sentences i
|. Pre-training on synthetic sentences
erroriul §entences asin PIE-synthetic 9,000,000 100.0%
(Awasthi et al., 2019)
Il. Fine-tuning on errorful-only Lang-8 947 344 50 5%
sentences
ll. Fine'tuning on subset of NUCLE 56,958 38.0%
errorful and errorfree
sentences as in FCE 34,490 62.4%
(Kiyono et al., 2019)
W&I+LOCNESS

https://arxiv.org/abs/1910.02893
https://arxiv.org/abs/1909.00502

4

Training details

e Adam optimizer (
e Early stopping after 3 epochs of 10K
updates each w/a improvement;
e Epochs & batch sizes:
Stage | (pretraining):
batch size=256, 20 epochs
Stages I, Il (finetuning):
batch size=128, 2-3 epochs

* Results are given for GECToR (XLNet).

);

Training
stage #

[l + Inf.
tweaks

CoNLL-2014
(test)*, F

49.9

59.7

62.5

65.3

33.2

44 .4

50.3

55.5

BEA-2019

(dev)*, Fo_5

C))

https://arxiv.org/abs/1412.6980

Inference tweaks 1

By increasing probability of $KEEP tag we can force model to make

only confident actions.

In such a way, we can increase precision by trading recall.

Inference tweaks 2

We also compute the minimum probability of incorrect class across

all tokens in the sentence.

This value (min_erorr_probability) should be higher than threshold in

order to run next iteration.

BERT family

Varying encoders from
pretrained transformers

Encoder
P

LSTM** 51.6
59.5
65.6
61.0
67.5

64.6

* Training was performed on data from training stage Il only. ** Baseline.

CONLL-2014 (test)
R
15.3
31.0
36.9
6.3
38.3

42.6

F0.5
35.0
50.3
56.8
22.2
58.6

58.6

P
43.8
48.3
44.5
50.3
471

BEA-2019 (test)
R
22.3
29.0
5.0
30.5

34.2

F0.5

36.7
42.6
17.2
44.5

43.8

©

https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1810.04805
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1906.08237

Varying encoders from
pretrained transformers

CONLL-2014 (test) BEA-2019 (test)
Encoder
P R F0.5 P R F0.5

LSTM** 51.6 15.3 35.0 - - -
ALBERT 59.5 31.0 50.3 43.8 22.3 36.7

BERT 65.6 36.9 56.8 48.3 29.0 42.6

GPT-2 61.0 6.3 22.2 44.5 5.0 17.2
RoBERTa

XLNet

* Training was performed on data from training stage Il only. ** Baseline. @

https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1810.04805
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1906.08237

Model inference
time

Speed comparison

e NVIDIA Tesla V100
e CoNLL-2014 (test)
e single model

e batch size=128

Speed comparison

Inference time*

seg2seq seg2seq seg2seq GECToR XLNet GECTOR XLNet
transformer transformer transformer (5 iterations) (1 iteration)

(beam=12) (beam=3) (beam=1) @

Final results

Big picture

65.25

65

60 -

55

50

45

40

35.6

30.5

30 mmm—
baseline with transforms with frozen distiled BERT BERT cased with synthetic with BEA with KEEP XLNet model
BERT pretrain tuning tuning

Results [2019]

CoNLL-2014 (test)

BEA-2019 (test)

GEC system Ens. P R Fg P R Foso
Zhao et al. (2019) 67.7 40.6 59.8 - - -
Awasthi et al. (2019) 66.1 43.0 59.7 - - -
Kiyono et al. (2019) 679 441 613 | 655 594 642
Zhao et al. (2019) v 74.1 363 61.3 - - -
Awasthi et al. (2019) v 68.3 432 612 - - -
Kiyono et al. (2019) v 724 46.1 650 | 747 56.7 70.2
Kantor et al. (2019) v - - - 783 58.0 732
GECToR (BERT) 72.1 420 630 | 71.5 557 67.6
GECToR (RoBERT3a) 739 415 640 | 772 551 715
GECToR (XLNet) 775 40.1 653 | 792 539 724
GECToR (RoBERTa + XLNet) v 76.6 423 660 | 794 572 73.7
GECToR (BERT + RoBERTa + XL Net) v 782 415 665 | 789 58.2 73.6

Results [2022; CONLL-2014 (test)]

Model FO.5 Paper / Source

T5 (t5.1.1.xxl) trained on cLang-8 68.87 | A Simple Recipe for 5

(Rothe et al., ACL-IJCNLP 2021) Multilingual Grammatical cLang-
Error Correction 8

Tagged corruptions - ensemble 68.3 | Synthetic Data Generation Official

(Stahlberg and Kumar, 2021) for Grammatical Error

Correction with Tagged
Corruption Models

Sequence tagging + token-level 66.5 | GECToR — Grammatical Official
transformations + two-stage fine- Error Correction: Tag, Not

tuning + (BERT, RoBERTa, XLNet), Rewrite

ensemble (Omelianchuk et al.,

BEA 2020)

' Source: nlpprogress.com [link]

http://nlpprogress.com/english/grammatical_error_correction.htmlhttp://nlpprogress.com/english/grammatical_error_correction.html

Results [2022; BEA-2019 (test)]

Model FO.5 Paper / Source Code
GECToR large without 76.05 | Improving Sequence Tagging Official
synthetic pre-training - for Grammatical Error
ensemble (Tarnavskyi and Correction
Omelianchuk, 2021)
T5 (t5.1.1.xxl) trained on 75.88 | A Simple Recipe for T5, cLang-
cLang-8 (Rothe et al., ACL- Multilingual Grammatical 8
IJCNLP 2021) Error Correction
Tagged corruptions - ensemble | 74.9 | Synthetic Data Generation for Official
(Stahlberg and Kumar, 2021) Grammatical Error Correction

with Tagged Corruption

Models
Sequence tagging + token- 73.6 | GECToR — Grammatical Error Official

level transformations + two-
stage fine-tuning + (BERT,
RoBERTa, XLNet), ensemble
(Omelianchuk et al., BEA
2020)

Correction: Tag, Not Rewrite

Source: nlpprogress.com [link]

http://nlpprogress.com/english/grammatical_error_correction.htmlhttp://nlpprogress.com/english/grammatical_error_correction.html

Text
Simplification

This work was done in 2020

This part of the presentation is based on the lext Simplification

oy Tagaing paper written by:

- Kostiantyn Omelianchuk
- Oleksandr Skurzhanskyi
- Vipul Raheja

https://aclanthology.org/2021.bea-1.2/
https://aclanthology.org/2021.bea-1.2/

Text Simplification

consists of modifying the content and structure of a text in order to make it
easier to read and understand, while preserving its main idea and
approximating its original meaning

could benefit low literacy readers, English learners, children, and people with
reading disabilities

most commonly-used automatic metrics are:

SARI
FKGL
BLEU

Text Simplification

Source Target

Simplification All students when attending a university must | All students when going into a university must
adhere to these guidelines. follow these rules.

GEC She see Tom is catched by policeman in park | She saw Tom caught by a policeman in the park

at last night.

last night.

Challenges

Training data: only 2 publicly available training datasets:

WikiLarge (300k) is a set of automatically aligned complex-simple sentence pairs
from English Wikipedia

Newsela includes thousands of news articles professionally leveled to different
reading complexities. Has legal constraints to use it for public research.

Evaluation: unreliable metrics (SARI, FKGL), like for almost
every text generation task

Adapt GECToR approach from GEC to Text Simplification

TST: GECToR for Simplification

Edit-Tag Vocabulary

Tags overlap between tasks 92% allow to use GEC tags

Data Preprocessing
Tried special preprocessing for Simplification task which was beneficial

GEC Pretraining
Explored GEC initialization for Text Simplification
GECTOoR codebase is outdated (transformers 2.*) -> updated the code

Tokenization in GECToR was incorrect -> fixed
Data Augmentations (details in next slide)

Tagging models
Used RoBERTa-BASE for Text Simplification (vs. an ensemble of BERT, XLNET and

RoBERTa used by GECToR)

Inference Tweaks
$DELETE is highly important tag -> designed a new inference tweak for it

TST: Data Augmentations

Standard Train/Test sets for Text Simplification
WikiAll: 384k pairs collected from English Wikipedia-Simple
Wikipedia
WikiSmall (88k Pairs)
WikiLarge (296k Pairs)
WikiBT: Back-translated WikiAll (en-de and en-fr)

WikiEns: Ensemble Distillation of 3 models

TST on WikiAll (randomly initialized)
TST-GEC on WikiAll (TST fine tuned on GEC task)
TST on WikiAll + WikiBT

' Final training set: WikiAll (384k Pairs) + WikiEns (384k Pairs)

Results: Evaluation Metrics

Metrics depend a lot on tokenization. 1+ points could be achieved by simply
changing tokenization method

SARI is calculated differently for the corpus-level:

It’s not just averaged of the sentence-level scores: statistics should be

gathered on
the whole corpus, then calculated

F1 is used for deletion operation
BLEU is bad for the Text Simplification evaluation

is a great evaluation package

https://github.com/feralvam/easse

Results: Simplification Quality

SOTA on WikiSmall, near-SOTA on TurkCorpus and ASSET

TurkCorpus ASSET WikiSmall

| SARIt | ADDt DELETEt KEEPt | SARIt | ADDt DELETEt KEEPt | | SARIt | ADDt DELETEt KEEPt
Recent Works | Recent Works | Recent Works |
Xu et al. (2016b) 39.96 5.96 41.42 7252 Martin et al. (20202) | 40.13 8 2 2 ‘ Zhang and Lapata (2017) 27.24 - = =
Nisioi et al. (2017) 35.66 2.99 28.96 75.02 Martin et al. (2020b) | 44.15:0. = S g Alva-Manchego et al. (2017)[30.50 272 76.31 12.46
Zhang and Lapata (2017) 37.27 - - 7 Reference Baseline | 44.89.090 | 10.17.,50 58.76.221 65.73.1503 | Vu etal. (2018) 29.75 - - -
Alva-Manchego et al. (2017)f[37.08 294 4320 65.10 Guo etal. (2018) 28.24 - s E
Vu et al. (2018) 36.88 - s & Our System | Qiang (2018) 26.49 - - -
Zhao et al. (2018a) 40.42 5.72 4223 7341 TST-BASE 34416 | 3620050 4722445 61374035 Dong et al. (2019) 32.35 224 81.30 13.54
Guo et al. (2018) 37.45 - 5 - TST-FINAL 4321403 | 8041020 6425:12 57.35:168 Zhao et al. (2020b) 36.92 204 72.79 35.93
Qiang (2018) 37.21 - s s :
Surya et al. (2019) 3496] i}] Reference Baseline | - - - -
Dong et al. (2019) 38.22 3.36 39.15 72.13 Our System |
Zuaoctal. (20200) L] 28 4006 se.82 TST-BASE 311y g7 | 4662191 61132075 63541m7s
Mallinson et al. (2020) 38.13 3.55 40.45 70.39 TS TP Pl Pl L e
Martin et al. (2020a) 41.38 _ _ ~ 671106 | 8.1240.92 871200 Olii7e
Martin et al. (2020b) 42534036 - - - # Quoted from the re-implementation by Dong et al. (2019).

Reference Baseline | 40.024072 | 6214060 70151135 43.6941.46

Our System |
TST-BASE 39174077 | 3.624041 41.61:314 72294145
TST-FINAL 4146404 | 696,044 4787075 69564119

Quoted from the re-implementation by Dong et al. (2019).

Results: Readability

SOTA on ASSET, Near-SOTA on TurkCorpus and WikiSmall

TurkCorpus

ASSET

| FKGL|
Recent Works |
Martin et al. (2020a) | 7.29
Martin et al. (2020b) | 7.60+1 06

Reference Baseline | 6.49.10.42

Our System |
TST-BASE 8.08.0.31
TST-FINAL 6.8710.27

| FKGL|
Recent Works
Xu et al. (2016b) 729
Nisioi et al. (2017) 8.42
Zhang and Lapata (2017) 6.62
Alva-Manchego et al. (2017)* | 5.35
Vu et al. (2018) -
Zhao et al. (2018a) 1.79
Guo et al. (2018) 7.41
Qiang (2018) 6.56
Surya et al. (2019) -
Dong et al. (2019) 73
Zhao et al. (2020b) -
Mallinson et al. (2020) 8.98
Martin et al. (2020a) 7.29
Martin et al. (2020b) 7.60+1.06
Reference Baseline | 8.77+0.19
Our System
TST-BASE 8.08.40.31

TST-FINAL 7871010

WikiSmall

| FKGL|
Recent Works
Zhang and Lapata (2017) 7.55
Alva-Manchego et al. (2017)'| 9.38
Vuetal. (2018) -
Guo et al. (2018) 6.93
Qiang (2018) 10.75
Dong et al. (2019) 547
Zhao et al. (2020b) -
Reference Baseline | 8.74
Our System
TST-BASE 841110
TST-FINAL 9.29+09

Results: Ablation Study

All adaptation steps progressively enhance the system

System SARI 1 FKGL |
TST 383+ 136 8.08 4 0.31
+ GEC 38.4 4+ 0.83 8.32 4 0.26
+ Filtering 39.1 £ 048 7.66 & 0.25
+ WikiBT 39.54+0.01 7.5+ 0.06
+ WikiEns (- WikiBT) 403 £0.15 7.48 + 0.2
+ InfTweaks 423+ 025 7.87 +0.19

Average SARI and FKGL scores

G grammarly

Text Simplification by Tagging

Kostiantyn Omelianchuk, Vipul Raheja, Oleksandr Skurzhanskyi

Text Simplification

Rewriting text into a form that is easier to read and understand while
preserving its underlying meaning and information.
Input: Hinterrhein is the canton of
Graubunden, Switzerland.
Output: Hinterrhein is a district of the canton of Graubunden,
Switzerland.

Limitations of existing approaches

Limited interpretability and insight into simplification operations
Little control or adaptability to different aspects of simplification
Not sample-efficient

Slow inference speeds owing to autoregressive decoding

Our Approach

Input _|
Sentence

Repeat t times Output
Sentence

1. Define custom edit transformations (token-level edit tags)

2. Perform iterative sequence tagging to convert target sequences to
tag sequences

3. Fine-tune pre-trained transformers to predict the tag sequences

Edit Transformations

keep current
token unchanged

) delete current
token

append new
token t,

replace current

change the case
of current token

merge current and
~ next tokens

convert singular noun to
plurals and vice versa

change the form
» of verbs

Systemic Enhancements

We propose several approaches to improve the performance of the

model on the task:

o Initialize the model with weights trained for GEC

e Filter out bracketed text

e Enriching data with back-translated data (WikiBT);

e Enriching data with ensemble-generated data (WikiEns)

e Tune confidence biases to adjust the probabilities of KEEP and
DELETE edit-tags (InfTweaks)

Ablation Study

System RI FKGL |

TST 383+ 136 8.08+0.31
+ GEC 3844083 83240.26
+ Filtering 39.1 £048 7.66 &+ 0.25

+ WikiBT 39.54+0.01 7.5+0.06
+ WikiEns (- WikiBT) 40.3 +0.15 7.48 + 0.2
+ InfTweaks 423 +0.25 7.87+0.19

Average SARI and FKGL scores
(ASSET and TurkCorpus test set)

token with token t.

Results

Comparison with SOTA system and Reference baseline
SARI(avg) I FKGL (avg)

%00 10

w00 . : s

200 6

SARI (greater - better)

Reference TST-Base [TST-Final

We present TST, a simple ¢
based on sequence tagging
TST is highly interpretable
simplification operations.
TST achieves near-SOTA resu
faster than previous SOTA
Using proposed data augmentati
to substantial improvements on

Reusable artifacts

Repository & models

H grammarly [gector Public ®uUnwatch 17 ~ % Fork 120 Starred 529

<> Code © Issues 1 1 Pull requests (® Actions 5 Projects [wiki @© Security |~ Insights 53 Settings

Filters v Q is:open is:issue O Labels 9 & Milestones 0 m

Clear current search query, filters, and sorts

O O 10pen + 130 Closed Author ~ Label ~ Projects ~ Milestones ~ Assignee v Sort ~

J ©® optimize the tokenization D2
#143 opened on 9 Dec 2021 by HillZhang1999

Repository & models

Pretrained models

Pretrained encoder = Confidence bias = Min error prob CoNNL-2014 (test) BEA-2019 (test)

BERT [link] 0.1 0.41 61.0 68.0
RoBERTa [link] 0.2 0.5 64.0 71.8
XLNet [link] 0.2 0.5 63.2 71.2

Note: The scores in the table are different from the paper's ones, as the later version of transformers is used. To
reproduce the results reported in the paper, use this version of the repository.

SARI
Model TurkCorpus ASSET
TST-FINAL [link] 39.9 40.3
TST-FINAL + tweaks 41.0 42.7

FKGL

7.65

7.61

©

Links

o GEC paper

e Text Simplification paper

e The code

https://aclanthology.org/2020.bea-1.16/
https://aclanthology.org/2021.bea-1.2/
https://github.com/grammarly/gector

Questions?

@ grammarly

