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Who we are?



Who we are?

Oleksandr Skurzhanskyi, Applied 

Research Scientist, Grammarly

Kostia Omelianchuk, Applied 

Research Scientist, Grammarly



What is Grammarly?

Grammarly’s AI-powered writing 
assistant helps you make your 
communication clear and effective, 
wherever you type.



GEC task 
overview



The goal of GEC task is to produce the grammatically correct 

sentence from the sentence with mistakes. Here we’re talking 

about English language specifically.

Example:

Source: He go at school.

Target: He goes to school.

GEC: Grammatical Error Correction



GEC: Data



GEC: Shared task

- CoNLL-2014 (the test set is composed of 50 essays written 

by non-native English students; metric - M2Score)

- BEA-2019 (new data; the test set consists of 4477 

sentences; metric - Errant)



GEC: Progress



Dominant approach in 2019  

● GEC was treating as machine translation problem mostly

● Seq2Seq models are status quo for most sentence-level 

transduction tasks

● Drawbacks
○ Require large amounts of annotated parallel data - slow and expensive

○ Autoregressive decoding - not performant

○ Not controllable or explainable - unfit for real-world products

   The   cat   sat    on   mat   The    cat     sat     on     the    matSeq2Seq 
Model



Sequence 
Tagging



This work was done in fall 2019

This part of the presentation is based on the paper written by:

- Kostiantyn Omelianchuk
- Oleksandr Skurzhanskyi
- Vitaliy Atrasevych
- Artem Chernodub

https://aclanthology.org/2020.bea-1.16/


We approach the GEC task as a sequence tagging problem. 

In this formulation for each token in the source sentence a GEC 

system should produce a tag (edit) which represent a required 

correction operation for this token. 

For solving this problem we use non-autoregressive 

transformer-based model.

Sequence Tagging



keep the current token 
unchanged

APPEND_ti

DELETE

REPLACE_ti

KEEP

delete current token

append new token ti

replace the current token 
with token ti

SPLIT

MERGE

NOUN 
NUMBER

CASE

VERB
FORM

Basic transformations

change the case of the 
current token

g-transformations

merge the current and 
the next token 

split the current token 
into two

convert singular nouns 
to plurals and vice versa

change the form of 
regular/irregular verbs



Token-level transformations
                  A ten years old boy go school

                    A ⇨ A:

           ten ⇨ ten, -:                                , 

     years ⇨ year, -: 

               old ⇨ old:                                                                                                                

       go ⇨ goes, to:

school ⇨ school, .:                     

A ten years old boy go school
A ten years old boy go school

$KEEP

$MERGE_HYPH

$NOUN_NUMBER_SINGULAR

$VERB_FORM_VB_VBZ

$APPEND_{.}

$KEEP

$MERGE_HYPH

$KEEP

$APPEND_{to}

$KEEP

A ten-year-old boy goes to school.



1. Generating tags is fully independent and easy to parallelize 

operation.

2. Smaller output vocabulary size compare to seq2seq 

models.

3. Less usage memory and faster inference compare to 

encoder-decoder models.

Sequence Tagging: Pros



Sequence Tagging: Cons

1. Independent generating of tags relies on assumption that 

errors are independent between each other.

2. Word reordering is tricky for this architecture.



First baselines 



Academia vs Industry

- different data (both training/evaluation)

- latency/throughput matters

- aggressive deadlines



Baseline architecture

Encoder

Input sentence

Error 
replacement 
linear layer

Predicted tags

Corrected 

sentence

Error 
detection 

linear layer
Postprocess

Error insertion 
linear layer(s)

Embeddings



 Baseline hyperparameters

- Emedings (trainable random, glove, bert, distill-bert)

- Encoder (cnn, lstm, stacked-lstm, pass_through, transformers)

- Output layers (1-2 for insertions, 1 for replacement, 1 for 

detection)

- Output vocabulary size (100-50000)

- Other (dropouts, training schedule, tp/tn ratio, etc)



 Baseline results

Baseline/m2 score CoNLL-2014 (test)
Stacked LSTM (vocab_size=1000) 30.5
Stacked LSTM (vocab_size=1000; + g-transformations) 35.6
Stacked LSTM (vocab_size=1000; + g-transformations; + 
BERT embeddings) 46

Academic SOTA (single model) [2019] 61.3

https://arxiv.org/pdf/1909.00502.pdf


 Insights

- Increasing size of output vocabulary did not help

- Adding BERT as emdebbings helped a lot

- Training BERT with small batch_size failed (didn’t converge); 

training with bigger batches required gradient accumulating



Similar approach 



PIE paper

Our SOTA on NUCLE: 46



Transformers



 Transformer

Attention Is All You Need 

(Vaswani et al. 2017)

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762


Multihead attention



 BERT-like architecture

BERT (Devlin et al. 2018)

https://arxiv.org/abs/1810.04805


Training 
transformers



huggingface / transformers

https://github.com/huggingface/transformers


Thing that made our transformers work:

● small learning rate (1e-5)

● big batch size (at least 128 sentences)

or use gradient accumulation

● freeze BERT encoder first and train only linear layer, 

then train jointly

Transformers recipe



*on CoNLL-2014 (test)

BERTology works

LSTM 35.6

LSTM + BERT 
embeddings

46.0

DistillBERT 52.8

BERT-base 57.3



Additional tricks



                  A ten years old boy go school (zero corrections)

Iteration 1: A ten-years old boy goes school (2 total corrections)

Iteration 2  A ten-year-old boy goes to school (5 total corrections)

Iteration 3: A ten-year-old boy goes to school. (6 total corrections)

Iteration 2

Iterative Approach

Iteration 1

Iteration 3

Sequence



GECToR model: iterative 
pipeline

Encoder (transformer-based)

Input sentence

Error correction 
linear layer

Predicted tags

Corrected 

sentence

Error detection 
linear layer

Postprocess

Repeat N times



● Training is splitted in N stages

● Each stage has its own data

● Each stage has its own hyperparameters 

● On each stage model is initialized by the best weights of 

previous stage

Staged training



I. Pre-training on synthetic 
errorful sentences as in 
(Awasthi et al., 2019)

II. Fine-tuning on errorful-only 
sentences

III. Fine-tuning on subset of 
errorful and errorfree 
sentences as in 
(Kiyono et al., 2019)

Training stages

Dataset # sentences % errorful 
sentences

PIE-synthetic 9,000,000 100.0%

Lang-8 947,344 52.5%

NUCLE 56,958 38.0%

FCE 34,490 62.4%

W&I+LOCNESS 34,304 67.3%

https://arxiv.org/abs/1910.02893
https://arxiv.org/abs/1909.00502


I. Pre-training on synthetic 
errorful sentences as in 
(Awasthi et al., 2019)

II. Fine-tuning on errorful-only 
sentences(new!)

III. Fine-tuning on subset of 
errorful and errorfree 
sentences as in 
(Kiyono et al., 2019)

Training stages

Dataset # sentences % errorful 
sentences

PIE-synthetic 9,000,000 100.0%

Lang-8 947,344 52.5%

NUCLE 56,958 38.0%

FCE 34,490 62.4%

W&I+LOCNESS 34,304 67.3%

https://arxiv.org/abs/1910.02893
https://arxiv.org/abs/1909.00502


I. Pre-training on synthetic 
errorful sentences as in 
(Awasthi et al., 2019)

II. Fine-tuning on errorful-only 
sentences

III. Fine-tuning on subset of 
errorful and errorfree 
sentences as in 
(Kiyono et al., 2019)

Training stages

Dataset # sentences % errorful 
sentences

PIE-synthetic 9,000,000 100.0%

Lang-8 947,344 52.5%

NUCLE 56,958 38.0%

FCE 34,490 62.4%

W&I+LOCNESS 34,304 67.3%

https://arxiv.org/abs/1910.02893
https://arxiv.org/abs/1909.00502


● Adam optimizer (Kingma and Ba, 2015);
● Early stopping after 3 epochs of 10K 

updates each w/a improvement;
● Epochs & batch sizes:

○ Stage I (pretraining):
 batch size=256, 20 epochs

○ Stages II, III (finetuning): 
batch size=128, 2-3 epochs

Training details

Training 
stage #

CoNLL-2014 
(test)*, F0.5

BEA-2019 
(dev)*, F0.5

I 49.9 33.2

II 59.7 44.4

III 62.5 50.3

III + Inf. 
tweaks 65.3 55.5

* Results are given for GECToR (XLNet).

https://arxiv.org/abs/1412.6980


Inference tweaks 1

By increasing probability of $KEEP tag we can force model to make 

only confident actions.

In such a way, we can increase precision by trading recall.



Inference tweaks 2

We also compute the minimum probability of incorrect class across 

all tokens in the sentence.

This value (min_erorr_probability) should be higher than threshold in 

order to run next iteration.



BERT family



Varying encoders from 
pretrained transformers 

* Training was performed on data from training stage II only. ** Baseline. 

Encoder
CONLL-2014 (test) BEA-2019 (test)

P R F0.5 P R F0.5

LSTM** 51.6 15.3 35.0 - - -

ALBERT 59.5 31.0 50.3 43.8 22.3 36.7

BERT 65.6 36.9 56.8 48.3 29.0 42.6

GPT-2 61.0 6.3 22.2 44.5 5.0 17.2

RoBERTa 67.5 38.3 58.6 50.3 30.5 44.5

XLNet 64.6 42.6 58.6 47.1 34.2 43.8

https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1810.04805
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1906.08237


Varying encoders from 
pretrained transformers 

* Training was performed on data from training stage II only. ** Baseline. 

Encoder
CONLL-2014 (test) BEA-2019 (test)

P R F0.5 P R F0.5

LSTM** 51.6 15.3 35.0 - - -

ALBERT 59.5 31.0 50.3 43.8 22.3 36.7

BERT 65.6 36.9 56.8 48.3 29.0 42.6

GPT-2 61.0 6.3 22.2 44.5 5.0 17.2

RoBERTa 67.5 38.3 58.6 50.3 30.5 44.5

XLNet 64.6 42.6 58.6 47.1 34.2 43.8

https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1810.04805
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1906.08237


Model inference 
time



Speed comparison

● NVIDIA Tesla V100

● CoNLL-2014 (test)

● single model

● batch size=128



Speed comparison



Final results



Big picture



Results [2019]



Results [2022; CoNLL-2014 (test)]

Source: nlpprogress.com [link]

http://nlpprogress.com/english/grammatical_error_correction.htmlhttp://nlpprogress.com/english/grammatical_error_correction.html


Results [2022; BEA-2019 (test)]

Source: nlpprogress.com [link]

http://nlpprogress.com/english/grammatical_error_correction.htmlhttp://nlpprogress.com/english/grammatical_error_correction.html


Text 
Simplification



This work was done in 2020

This part of the presentation is based on the Text Simplification 

by Tagging paper written by:

- Kostiantyn Omelianchuk

- Oleksandr Skurzhanskyi

- Vipul Raheja

https://aclanthology.org/2021.bea-1.2/
https://aclanthology.org/2021.bea-1.2/


Text Simplification

● consists of modifying the content and structure of a text in order to make it 
easier to read and understand, while preserving its main idea and 
approximating its original meaning

● could benefit low literacy readers, English learners, children, and people with 
reading disabilities

● most commonly-used automatic metrics are:

○ SARI
○ FKGL
○ BLEU



Text Simplification

Source Target

Simplification All students when attending a university must 
adhere to these guidelines.

All students when going into a university must 
follow these rules.

GEC She see Tom is catched by policeman in park 
at last night.

She saw Tom caught by a policeman in the park 
last night.



● Training data: only 2 publicly available training datasets:

○ WikiLarge (300k) is a set of automatically aligned complex-simple sentence pairs 
from English Wikipedia

○ Newsela includes thousands of news articles professionally leveled to different 
reading complexities. Has legal constraints to use it for public research.

● Evaluation: unreliable metrics (SARI, FKGL), like for almost 
every text generation task

● Adapt GECToR approach from GEC to Text Simplification

Challenges



● Edit-Tag Vocabulary
○ Tags overlap between tasks 92% allow to use GEC tags

● Data Preprocessing
○ Tried special preprocessing for Simplification task which was beneficial

● GEC Pretraining
○ Explored GEC initialization for Text Simplification

○ GECToR codebase is outdated (transformers 2.*) -> updated the code 

○ Tokenization in GECToR was incorrect -> fixed

● Data Augmentations (details in next slide)

● Tagging models
○ Used RoBERTa-BASE for Text Simplification (vs. an ensemble of BERT, XLNET and 

RoBERTa used by GECToR)

● Inference Tweaks
○ $DELETE is highly important tag -> designed a new inference tweak for it

TST: GECToR for Simplification



● Standard Train/Test sets for Text Simplification

● WikiAll: 384k pairs collected from English Wikipedia-Simple 

Wikipedia

○ WikiSmall (88k Pairs)

○ WikiLarge (296k Pairs)

● WikiBT: Back-translated WikiAll (en-de and en-fr)

● WikiEns: Ensemble Distillation of 3 models

○ TST on WikiAll (randomly initialized)

○ TST-GEC on WikiAll (TST fine tuned on GEC task)

○ TST on WikiAll + WikiBT

● Final training set: WikiAll (384k Pairs) + WikiEns (384k Pairs)

TST: Data Augmentations



● Metrics depend a lot on tokenization. 1+ points could be achieved by simply 
changing tokenization method

● SARI is calculated differently for the corpus-level:

○ It’s not just averaged of the sentence-level scores: statistics should be 
gathered on 
the whole corpus, then calculated

○ F1 is used for deletion operation

● BLEU is bad for the Text Simplification evaluation

● EASSE is a great evaluation package 

Results: Evaluation Metrics

https://github.com/feralvam/easse


Results: Simplification Quality

TurkCorpus  ASSET       WikiSmall

SOTA on WikiSmall, near-SOTA on TurkCorpus and ASSET



Results: Readability

TurkCorpus ASSET WikiSmall

SOTA on ASSET, Near-SOTA on TurkCorpus and WikiSmall



Results: Ablation Study

 

Average SARI and FKGL scores

All adaptation steps progressively enhance the system





Reusable artifacts



Repository & models 



Repository & models 



Links

● GEC paper

● Text Simplification paper

● The code

https://aclanthology.org/2020.bea-1.16/
https://aclanthology.org/2021.bea-1.2/
https://github.com/grammarly/gector


Questions?


