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Today: “Basic” adversarial machine learning in 45mins

min
x∈X

max
y∈Y

Φ(x,y)

◦ A seemingly simple optimization formulation

◦ Critical in machine learning with many applications

I Adversarial examples and training
I Generative adversarial networks
I Robust reinforcement learning
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Warm up: Flexibility of the template

Φ? = min
x∈X

max
y∈Y

Φ(x,y) (argmin, argmax→ x?,y?)

f? = min
x:x∈X

f(x) (argmin→ x?)

◦ (eula) In the sequel,

I the set X is convex and has a tractable projection operator πX
I all convergence characterizations are with feasible iterates xk ∈ X

I gradient mapping means Gα(xk) = 1
α

[xk − πX (xk − α∇f(xk))], where α is the step-size

I L-smooth means ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖, ∀x,y ∈ X

I ∂ may refer to the generalized subdifferential, and δX refers to the indicator function for the set X
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A deep learning optimization problem in supervised learning

Definition (Optimization formulation)
The deep-learning training problem is given by

x?DL ∈ arg min
x∈X

{
f(x) :=

1
n

n∑
i=1

L(hx(ai), bi)

}
,

where X denotes the constraints on the parameters.

Some frequently used loss functions

I L(hx(a), b) = log(1 + exp(−bhx(a))) logistic loss
I L(hx(a), b) = (b− hx(a))2 squared error
I L(hx(a), b) = max(0, 1− bhx(a)) hinge loss
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A deep learning optimization problem in supervised learning

Definition (Optimization formulation)
The deep-learning training problem is given by

x?DL ∈ arg min
x∈X

{
f(x) :=

1
n

n∑
i=1

L(hx(ai), bi)

}
,

where X denotes the constraints on the parameters.

◦ A single hidden layer neural network with params x := [X1,X2, µ1, µ2]

hx(a) :=

[
X2

] activationy
σ


weight
↓[

X1

] input
↓[
a

]
+

bias
↓[
µ1

]
︸                                                      ︷︷                                                      ︸

hidden layer = learned features

+

bias
↓[
µ2

]
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An approximation theoretic motivation: Why neural networks?

Theorem (Universal approximation [4])
Let σ(·) be a nonconstant, bounded, and increasing
continuous function. Let Id = [0, 1]d. The space of
continuous functions on Id is denoted by C(Id).

Given ε > 0 and g ∈ C(Id) there exists a 1-hidden-layer
network h with m neurons such that h is an
ε-approximation of g, i.e.,

sup
a∈Id

|g(a)− h(a)| ≤ ε

Caveat
The number of neurons m needed to approximate some
function g can be arbitrarily large! Figure: Neural networks of increasing width
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A more realistic motivation: Why neural networks?

◦ Practical performance in applications
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◦ The human: Andrej Karpathy1

1https://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
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A grand challenge in DL/ML applications: Robustness (I)

(a) Turtle classified as rifle. Athalye et al. 2018. (b) Stop sign classified as 45 mph sign. Eykholt et al. 2018

Figure: Natural or human-crafted modifications that trick neural networks used in computer vision tasks
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A grand challenge in DL/ML applications: Robustness (II)

Figure: Understanding the robustness of a classifier in high-dimensional spaces. Shafahi et al. 2019.
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Towards adversarial training for robustness

Adversarial Training
Let hx : Rn → R be a model with parameters x and let {(ai,bi)}ni=1, with the data ai ∈ Rp and the labels bi.
The problem of adversarial training is the following adversarial optimization problem

min
x

1
n

n∑
i=1

[
max

η:‖η‖≤ε
L(hx (ai + η),bi)

]
≈ min

x
E(a,b)∼P

[
max

η:‖η‖≤ε
L(hx (ai + η),bi)

]
.

This problem can be formulated within the template minx∈X maxy∈Y Φ(x,y).
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Solving the outer problem

Adversarial Training
Let hx : Rn → R be a model with parameters x and let {(ai,bi)}ni=1, with ai ∈ Rp and bi be the
corresponding labels. The adversarial training optimization problem is given by

min
x

 1
n

n∑
i=1

fi(x) :=
1
n

n∑
i=1

[
max

η:‖η‖≤ε
L(hx (ai + η),bi)

]
︸                                       ︷︷                                       ︸

=:fi(x)

 .

Note that L is not continuously differentiable due to ReLU, max-pooling, etc.

Question
How can we compute the gradient

∇xfi(x) := ∇x

(
max

η:‖η‖≤ε
L(hx (ai + η),bi)

)
?

◦ Challenge: It involves differentiating with respect to a maximization.

◦ A solution: We can use Danskin’s theorem under some conditions. See EPFL EE-556 (Lectures 9-10).
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Basic first-order methods: GD and SGD

◦ Consider the finite sum (e.g., ERM) setting

f? := min
x∈Rp

{
f(x) :=

1
n

n∑
j=1

fj(x)
}
.

◦ Goal: Find x? such that ∇f(x?) = 0.

Algorithms in the finite sum setting

Gradient Descent

xk+1 = xk − αk∇f(xk)

◦ ∇f(xk) = 1
n

∑n

j=1∇fj(x
k)

◦ αk can be constant

Stochastic Gradient Descent

xk+1 = xk − αkG(xk, θk)

◦ G(xk, θk) = ∇fj(xk), j ∼ Uniform({1, · · · , n})

◦ E[G(xk, θk)] = ∇f(xk)

◦ We will mostly focus on SGD in the sequel due to its scalability and generalization performance.
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Stochastic Gradient Descent (SGD) and some key variants

Vanilla (Minibatch) SGD
Input: Stochastic gradient oracle g, initial point x0, step size αk
1. For k = 0, 1, . . .:

obtain the (minibatch) stochastic gradient gk
update xk+1 ← xk − αkgk

Perturbed Stochastic Gradient Descent [7]
Input: Stochastic gradient oracle g, initial point x0, step size αk
1. For k = 0, 1, . . .:

sample noise ξ uniformly from unit sphere
update xk+1 ← xk − αk(gk + ξ)

Stochastic Gradient Langevin Dynamics [25]
Input: Stochastic gradient oracle g, initial point x0, step size αk
1. For k = 0, 1, . . .

sample noise ξ standard Gaussian
update xk+1 ← xk − αkgk +

√
2αkξ
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Basic questions:

1. Does SGD converge with probability 1?

2. Does SGD avoid non-minimum points with probability 1?

3. How fast does SGD converge to local minimizers?
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Critical points

Recall (Classification of critical points)
Let f : Rp → R be twice differentiable and let x̄ be a critical point, i.e., ∇f(x̄) = 0. Let {λi}di=1 be the
eigenvalues of the hessian ∇2f(x̄), then
I λi > 0 for all i ⇒ x̄ is a local minimum
I λi < 0 for all i ⇒ x̄ is a local maximum
I λi > 0, λj < 0 for some i, j and λi , 0 for all i ⇒ x̄ is a saddle point
I Other cases ⇒ inconclusive

(a) (b)

(c) (d)

Figure 5: Illustrations of three different types of saddle points (a-c) plus a gutter structure (d). Note
that for the gutter structure, any point from the circle x2 + y2 = 1 is a minimum. The shape of the
function is that of the bottom of a bottle of wine. This means that the minimum is a “ring” instead of
a single point. The Hessian is singular at any of these points. (c) shows a Monkey saddle where you
have both a min-max structure as in (b) but also a 0 eigenvalue, which results, along some direction,
in a shape similar to (a).

12

Figure: Minmax saddle (λi , 0 for all i)

(a) (b)

(c) (d)

Figure 5: Illustrations of three different types of saddle points (a-c) plus a gutter structure (d). Note
that for the gutter structure, any point from the circle x2 + y2 = 1 is a minimum. The shape of the
function is that of the bottom of a bottle of wine. This means that the minimum is a “ring” instead of
a single point. The Hessian is singular at any of these points. (c) shows a Monkey saddle where you
have both a min-max structure as in (b) but also a 0 eigenvalue, which results, along some direction,
in a shape similar to (a).

12

Figure: Monkey saddle (λi = 0 for some i)
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Q1: Does SGD converge?

◦ SGD converges to the critical points of f as k →∞.

1. GD converges from any intialization with constant step-size and full gradients

2. With probability 1, (P)SGD does not converge with constant step-size α [2, 23]

3. With probability 1, SGD converges with vanishing step-size if xk is bounded with probability 1 [16, 2]

Boundedness is not required (Theorem 1 of [18])
Assume Lipschitzness, sublevel regularity, E‖g‖q ≤ σq and

∑
k
α

1+q/2
k

<∞ (q ≥ 2). Then, xk converges with
probability 1.
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Q2: Does SGD avoid saddle points?

◦ SGD avoids strict saddles (λmin(∇2f(x̄)) < 0)

1. GD avoids strict saddles from almost all initializations [14]

2. With probability 1− ζ, PSGD with constant α escapes strict saddles after Ω
(
log(1/ζ)/α2

)
iterations [8]

I However, SGD does not converge with constant α

I We cannot take ζ = 0

SGD avoids traps almost surely (Theorem 3 of [18])
Assume bounded uniformly exciting noise and αk = O

(
1
kκ

)
for κ ∈ (0, 1]. Then, SGD avoids strict saddles

from any initial condition with probability 1.
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Q3: How fast does SGD converge to local minimizers?

◦ SGD remains close to Hurwicz minimizers (i.e., x∗ : λmin(∇2f(x∗)) > 0 )

1. SGD with constant α can obtain objective value ε-close to a Hurwicz minimizer in O(1/ε2)-iterations [8, 9]

I However, SGD does not converge with constant α

I Need averaging which is problematic in non-convex optimization

Using a vanishing step-size helps! (Theorem 4 of [18])
Using αk = O

(
1
k

)
, SGD enjoys a O

(
1
k

)
convergence rate in objective value.
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Using 1/k step-size decrease helps in practice

◦ ResNet training at different cool-down cut-offs
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Worst-case iteration complexities of classical projected first-order methods12

f(x) gradient oracle L-smooth Stationarity measure GD/SGD Accelerated GD/SGD

Convex stochastic yes f(xk)− f? = O
(

1√
k

)
O
(

1√
k

)
Convex deterministic yes f(xk)− f? = O

(
1
k

)
O
(

1
k2

)
Convex stochastic no f(xk)− f? = O

(
1√
k

)
O
(

1√
k

)
Nonconvex stochastic yes ‖Gα(xk)‖2 = O

(
1√
k

)
3 O

(
1√
k

)
3

Nonconvex deterministic yes ‖Gα(xk)‖2 = O
(

1
k

)
4 O

(
1
k

)
4

Nonconvex stochastic no dist(0, ∂(f(xk) + δX (xk)))2 = ?356 ?356

◦ Basic structures, such as smoothness or strong convexity, help, but there are more structures that can be used:
I max-form, metric subregularity, Polyak-Lojasiewicz, Kurdyka-Lojasiewicz, weak convexity,3 growth cond...

1Y. Nesterov, “Introductory lectures on convex optimization: A basic course,” Springer Science, 2013.
2Y. Carmon, J.C. Duchi, O. Hinder, and A. Sidford, “Lower bounds for finding stationary points I–II." Mathematical Programming, 2019.
3D. Davis and D. Drusvyatskiy, “Stochastic model-based minimization of weakly convex functions,” SIOPT, 2019.
4S. Ghadimi and G. Lan, “Accelerated gradient methods for nonconvex nonlinear and stochastic programming," MathProg, 2016.
5J. Zhang, et al., “On complexity of finding stationary points of nonsmooth nonconvex functions,” arXiv:2002.04130, 2020.
6O. Shamir, “Can We Find Near-Approximately-Stationary Points of Nonsmooth Nonconvex Functions?" arXiv:2002.11962, 2020.
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Detour: Weak convexity (WeCo) & approximate stationarity1

◦ Smooth: Gradient mapping norm
I ‖Gα(xk)‖2 = 1

α2 ‖xk − πX (xk − α∇f(xk))‖2

I possible to compute

◦ Non-smooth: Generalized subdifferential distance
I dist(0, ∂(f(xk) + δX (xk)))2

I hard in general (even approximately)23

◦ f is ρ-weakly convex if f(x) + ρ
2 ‖x‖

2 is convex.

Figure: ME with f(x) = |x2 − 1|, X = R, and v̂t = I.1

◦ Moreau envelope (ME):

ϕ1/ρ(x) = min
y∈X

{
f(y) +

ρ

2
‖y− x‖2

}
x̂← arg min

∇ϕ1/ρ(x) = ρ(x− x̂)

◦ Small ‖∇φ1/ρ(x)‖ implies near-stationarity:1

dist(0, ∂(f(xk) + δX (xk)))2 ≤ ‖∇φ1/ρ(xk)‖2

I also implies small ‖Gα(xk)‖2 if f is smooth
1D. Davis and D. Drusvyatskiy, “Stochastic model-based minimization of weakly convex functions,” SIOPT, 2019.
3J. Zhang, et al., “On complexity of finding stationary points of nonsmooth nonconvex functions,” arXiv:2002.04130, 2020.
3O. Shamir, “Can We Find Near-Approximately-Stationary Points of Nonsmooth Nonconvex Functions?" arXiv:2002.11962, 2020.
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A comparison of adaptive algorithms

GD/SGD Accelerated GD/SGD AdaGrad AcceleGrad/UniXgrad Adam/AMSGrad

Convex, stochastic O
(

1√
k

)
2 O

(
1√
k

)
2 O

(
1√
k

)
3 O

(
1√
k

)
4,5 O

(
1√
k

)
6

Convex, deterministic, L-smooth O
(

1
k

)
2 O

(
1
k2

)
2 O

(
1
k

)
4 O

(
1
k2

)
4,5 O

(
1
k

)
7

Nonconvex, stochastic, L-smooth O
(

1√
k

)
2 O

(
1√
k

)
2 O

(
1√
k

)
8 ? O

(
1√
k

)
9

Nonconvex, deterministic, L-smooth O
(

1
k

)
2 O

(
1
k

)
2 O

(
1
k

)
8 ? O

(
1
k

)
7

2 Lan, First-order and Stochastic Optimization Methods for Machine Learning. Springer Nature, 2020.
3 Duchi, Hazan, Singer, Adaptive subgradient methods for online learning and stochastic optimization, JMLR, 2011
4 Levy, Yurtsever, Cevher, Online adaptive methods, universality and acceleration, NeurIPS 2018
5 Kavis, Levy, Bach, Cevher, UniXGrad: A Universal, Adaptive Algorithm with Optimal Guarantees for Constrained Optimization, NeurIPS, 2019
6 Reddi, Kale, Kumar, On the convergence of adam and beyond, ICLR, 2018.
Alacaoglu, Malitsky, Mertikopoulos, Cevher, A new regret analysis for Adam-type algorithms, ICML 2020.
7 Barakat, Bianchi, Convergence Rates of a Momentum Algorithm with Bounded Adaptive Step Size for Nonconvex Optimization, ACML, 2020
8 Ward, Xu, Bottou, AdaGrad stepsizes: Sharp convergence over nonconvex landscapes, ICML 2019.
9 Alacaoglu, Malitsky, Cevher, Convergence of adaptive algorithms for weakly convex constrained optimization, NeurIPS, 2021.
Chen, Zhou, Tang, Yang, Cao, Gu, Closing the generalization gap of adaptive gradient methods in training deep neural networks, IJCAI 2020.
Chen, Liu, Sun, Hong, On the convergence of a class of adam-type algorithms for non-convex optimization, ICLR 2018.
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From empirical risk minimization...

Definition (Optimization formulation)
The deep-learning training problem is given by

x?DL ∈ arg min
x∈X
{ f(x) :=

1
n

n∑
i=1

L(hx(ai), bi) } ,

where X denotes the constraints on the parameters.

◦ A single hidden layer neural network with params x := [X1,X2, µ1, µ2]

hx(a) :=

[
X2

] activationy
σ


weight
↓[

X1

] input
↓[
a

]
+

bias
↓[
µ1

]
︸                                                      ︷︷                                                      ︸

hidden layer = learned features

+

bias
↓[
µ2

]
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Into generative adversarial networks (GANs)

◦ Key parametric density estimation setting

(source: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html)

ai = [ ...images...]
bi = [ ...probability... ]

◦ Goal: Games, denoising, image recovery...

◦ Generator Pa

I Nature

◦ Supervisor PB|a
I Frequency data

◦ Learning Machine hx(ai)
I Data scientist: Mathematics of Data
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A way to model complex distributions: The push-forward measure

◦ Traditionally, we use analytical distributions: Restricts what we could model in real applications.

◦ Now, we use more expressive probability measures via push-forward measures with neural networks.

Definition
◦ Let ω ∼ pΩ be a random variable.

◦ hx(·) : Rp → Rm a function parameterized by parameters x.

The pushforward measure of pΩ under hx, denoted by hx#pΩ is the distribution of hx(ω).
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Towards an optimization problem

Problem (Ideal parametric density estimator)
Given a true distribution µ\, we can solve the following optimization problem,

min
x
W1(µ\, hx#pΩ), (1)

where the measurable function hx is parameterized by x and ω ∼ pΩ is “simple.”

◦ We can minimize W1 (µ̂n, hx#pΩ) with respect to x.

◦ Figure: Empirical distribution (blue), µ̂n =
∑n

i=1 δi

A plug-in empirical estimator
Using the triangle inequality for Wasserstein distances we can upper bound in the follow way,

W1(µ\, hx#pΩ) ≤W1(µ\, µ̂n) +W1(µ̂n, hx#pΩ), (2)

where µ̂n is the empirical estimator of µ\ obtained from n independent samples from µ\.

Remarks: ◦ Using an empirical estimator in high-dimensions is terrible in the worst case [24, 6].
◦ However, it does not directly say that W1

(
µ\, hx#pΩ

)
will be large.
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Duality of 1-Wasserstein: Towards a minimax formulation

Theorem (Kantorovich-Rubinstein duality)

W1(µ, ν) = sup
d
{〈d, µ〉 − 〈d, ν〉 : d is 1-Lipschitz} (3)

Remark: ◦ d is the “dual” variable. In the literature, it is commonly referred to as the “discriminator.”

Inner product is an expectation

〈d, µ〉 =
∫

ddµ =
∫

d(a)dµ(a) = Ea∼µ [d(a)] . (4)

Kantorovich-Rubinstein duality applied to our objective

W1 (µ̂n, hx#ω) = sup
d

{
Ea∼µ̂n [d(a)]−Ea∼hx#ω [d(a)] : d is 1-Lipschitz

}
(5)
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Wasserstein GANs formulation
◦ Ingredients:

I fixed noise distribution pΩ (e.g., normal)
I target distribution µ̂n (natural images)
I X parameter class inducing a class of functions (generators)
I Y parameter class inducing a class of functions (dual variables)

Wasserstein GANs formulation [1]
Define a parameterized function dy(a), where y ∈ Y such that dy(a) is 1-Lipschitz. In this case, the
Wasserstein GAN optimization problem is given by

min
x∈X

(
max
y∈Y

Ea∼µ̂n [dy(a)]−Eω∼pΩ [dy(hx(ω))]
)
. (6)

This problem can be formulated within the template minx∈X maxy∈Y Φ(x,y).

Remarks: ◦ Cannot solve in a manner similar to adversarial training a la Danskin. Need a direct approach.
◦ Scalability, model collapse, catastrophic forgetting. Heuristics galore!
◦ Enforce Lipschitz constraint weight clipping, gradient penalty, spectral normalization [1, 10, 19].
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Abstract minmax formulation
Minimax formulation

min
x∈X

max
y∈Y

Φ(x,y), (7)

where
I Φ is differentiable and nonconvex in x and nonconcave in y,
I The domain is unconstrained, specifically X = Rm and Y = Rn.

◦ Key questions:

1. Where do the algorithms converge?

2. When do the algorithm converge?

A buffet of negative results [5]
“Even when the objective is a Lipschitz and smooth differentiable function, deciding whether a min-max point
exists, in fact even deciding whether an approximate min-max point exists, is NP-hard. More importantly, an
approximate local min-max point of large enough approximation is guaranteed to exist, but finding one such
point is PPAD-complete. The same is true of computing an approximate fixed point of the (Projected) Gradient
Descent/Ascent update dynamics.”
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Solution concept
◦ Like for nonconvex problems in minimization we try to find a local solution.

Definition (Local Nash Equilibrium)
A pure strategy (x?,y?) is called a Local Nash Equilibrium (LNE) if,

Φ (x?,y) ≤ Φ (x?,y?) ≤ Φ (x,y?) (LNE)

for all x and y within some neighborhood of x? and y?, i.e., ‖x− x?‖ ≤ δ and ‖y− y?‖ ≤ δ for some δ > 0.

Necessary conditions
Through a Taylor expansion around x? and
y? one can show that a LNE implies,

∇xΦ(x,y),−∇yΦ(x,y) = 0
∇xxΦ(x,y),−∇yyΦ(x,y) � 0

Figure: Φ(x, y) = x2 − y2
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Recall SGD results

min
x:x∈X

f(x)

◦ For a non-convex, smooth f , we have that

1. SGD converges to the critical points of f as N →∞.

2. SGD avoids strict saddles/traps (λmin(∇2f(x∗)) < 0) almost surely.

3. SGD remains close to Hurwicz minimizers (i.e., x∗ : λmin(∇2f(x∗)) > 0 almost surely.

◦ Nail in the coffin:

I not even sure if we obtain stochastic descent directions by approximately solving inner problems in GANs.

I GANs are fundamentally different from adversarial training!

◦ Need more direct approaches with the stochastic gradient estimates.
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Basic algorithms for minimax
◦ Given minx∈X maxy∈Y Φ(x,y), define V (z) = [−∇xΦ(x,y),∇yΦ(x,y)] with z = [x,y].

2 1 0 1 2
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

GDA
OGDA
EG
PP
Critical point

Figure: Trajectory of different algorithms for a simple bilinear game minx maxy xy.

◦ (In)Famous algorithms
I Gradient Descent Ascent (GDA)
I Proximal point method (PPM)
I Extra-gradient (EG)
I Optimistic Gradient Descent Ascent (OGDA)
I Reflected-Forward-Backward-Splitting (RFBS)

◦ EG and OGDA are approximations of the PPM
I zk+1 = zk − αV(zk).
I zk+1 = zk − αV(zk+1).
I zk+1 = zk − αV(zk − αV(zk−1))
I zk+1 = zk − α[2V(zk)−V(zk−1)]
I zk+1 = zk − αV(2zk − zk−1)
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Generalized Robbins-Monro schemes

◦ Given minx∈X maxy∈Y Φ(x,y), define V (z) = [−∇xΦ(x,y),∇yΦ(x,y)] with z = [x,y].

◦ Given V (z), define stochastic estimates of V (z, ζ) = V (z) + U(z, ζ), where

I U(z, ζ) is a bias term

I We often have unbiasedness: EU(z, ζ) = 0

I The bias term can have bounded moments

I We often have bounded variance: P (‖U(z, ζ)‖ ≥ t) ≤ 2 exp− t2

2σ2 for σ > 0.

◦ An abstract template for generalized Robbins-Monro schemes, dubbed as A:

zk+1 = zk + αkV (zk, ζk)

The dessert section in the buffet of negative results: [12]
1. Bounded trajectories of A always converge to an internally chain-transitive (ICT) set.
2. Trajectories of A may converge with arbitrarily high probability to spurious attractors that contain no

critical point of Φ.
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Minimax is more difficult than just optimization [12]
◦ Internally chain-transitive (ICT) sets characterize the convergence of dynamical systems [3].

I For optimization, {attracting ICT} ≡ {solutions}

I For minimax, {attracting ICT} ≡ {solutions} ∪ {spurious sets}

◦ “Almost” bilinear , bilinear:

Φ(x, y) = xy + εφ(x), φ(x) =
1
2
x2 −

1
4
x4
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2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Adam
ExtraAdam
Unstable critical point

4

3

2

1

0

1

2
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◦ The “forsaken” solutions:

Φ(y, x) = y(x−0.5)+φ(y)−φ(x), φ(u) =
1
4
u2−

1
2
u4+

1
6
u6
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A summary of results for nonconvex-concave setting

◦ A summary of gradient complexities to reach ε−first order stationary point in terms of gradient mapping.

Method Assumption on Φ(·, ·) Convergence rate Reference
GDA noconvex-concave Õ

(
ε−6
)

[15]

GDA nonconvex- strongly concave O
(
ε−2
)

[15]

GDmax nonconvex-concave Õ
(
ε−6
)

[13]

GDmax nonconvex- strongly concave O
(
ε−2
)

[13]

HiBSA, AGP nonconvex-concave Õ
(
ε−4
)

[17], [26]

HiBSA, AGP nonconvex- strongly concave O
(
ε−2
)

[17], [26]
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Comparison of convergence rates for smooth convex-concave minimax

Method Assumption on Φ(·, ·) Convergence rate Reference Note
PP convex-concave O

(
ε−1
)

[22]

PP strongly convex- strongly concave O
(
κ log(ε−1)

)
[22] Implicit algorithm

PP Bilinear O
(
κ log(ε−1)

)
[22]

EG convex-concave O
(
ε−1
)

[20]

EG strongly convex- strongly concave O
(
κ log(ε−1)

)
[21, 20] 1 extra-gradient evaluation per iteration

EG Bilinear O
(
κ log(ε−1)

)
[21, 20]

OGDA convex-concave O
(
ε−1
)

[20]

OGDA strongly convex- strongly concave O
(
κ log(ε−1)

)
[21, 20] no obvious downside

OGDA Bilinear O
(
κ log(ε−1)

)
[21, 20]
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Lifting minimax optimization: From pure to mixed Nash equilibrium

◦ Rethinking minimax problem as pure strategy game formulation

min
x∈X

max
y∈Y

Φ(x,y)

◦ A corresponding mixed strategy formulation

min
p∈M(X )

max
q∈M(Y)

Ex∼pEy∼q [Φ(x,y)]

I M(Z) B {all randomized strategies on Z}

I There is a way to solve this infinite dimensional problem: Mirror descent + Langevin dynamics [11]
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From pure to mixed Nash equilibrium
◦ Key ingredients

I 〈p, h〉 B
∫
h dp for a measure p and function h (Riesz representation)

I the linear operator G and its adjoint G†:

(Gq)(x) B Ey∼q [Φ(x,y)]

(G†p)(y) B Ex∼p [Φ(x,y)] ,

◦ Mixed NE formulation ' finite two-player games

min
p∈M(X )

max
q∈M(Y)

Ex∼pEy∼q [Φ(x,y)]

m
min

p∈M(X )
max

q∈M(Y)
〈p,Gq〉

I If X and Y are finite ⇒ mirror descent
I Caveat: infinite dimension!!! See solution details in [11].
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Application: Noisy action robust reinforcement learning1

◦ Train RL agent in the presence of an adversary

◦ Adversary budget: α ∈ [0, 0.5]

Noisy action robust MDP game
for t = 1, 2, . . . do:

both players observe state St ∈ S
both players choose actions At = µ(St) ∈ A, and A′t = ν(St) ∈ A
execute the noisy action Āt = (1− α)At + αA′t
agent gets reward Rt+1 = R(St, Āt), adversary gets −Rt+1

both players enter new state St+1

◦ Hope: Train in one environment, generalize to others

1K. Parameswaran, Y-T. Huang, Y-P. Hsieh, P. Rolland, C. Shi, and V. Cevher, “Robust Reinforcement Learning via Adversarial training with Langevin Dynamics" In NeurIPS,
2020.
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Experimental evaluation via MuJoCo

◦ Standard MuJoCo datasets
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Experimental evaluation via MuJoCo
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Escaping traps with the mixed-NE concept

max
ω∈[−2,2]

min
θ∈[−2,2]

−ω2θ2 + ωθ
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Thank you for your attention!10

◦ Minimax is more difficult than just optimization!

◦ It is possible to avoid limit cycles under right settings (upcoming work!)

◦ Universal adaptation is an open research topic

10Postdoc positions are available in my group!
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