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Diffusion Models 
• Text-to-image/video synthesis

• Imagen, stable diffusion, DreamBooth, diffusion transformer, SORA
• Text-to-3D

• Dreambooth3D, DreamFusion, Magic3D, ProlificDreamer, Score Jacobian Chaining
• 3D shape

• 3DiM, latent diffusion model, SparseFusion, GeNVS, BANMo, Zero-1-2-3
• Semantic correspondence

• Diffusion features (DIFT)
• Segmentation

• Open vocabular panoptic segmentation (ODISE)
• L. Yang et al. Diffusion models: A Comprehensive Survey of Methods and 

Applications. ACM Computing Surveys, 2024.
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Learning with Diffusion Models

• Exploiting diffusion features for correspondence (NeurIPS 2023)
• Geometric-aware semantic correspondence (CVPR 2024)
• Dense prediction with diffusion prior (CVPR 2024)
• DreaMo: Using diffusion prior for 3D reconstruction (arxiv 2024)
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A Tale of Two Features: 
Stable Diffusion Complements DINO for 
Zero-Shot Semantic Correspondence

NuerIPS 2023
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All about Features
• … -> SIFT -> CNN -> Vision Transformers -> Diffusion Models
• CNN features

• Layers, visualization
• Exploit features from different layers

• Response maps 
• Classification activation map (CAM)
• ViT features
• DINO ViT 

• Properties of CNNs and vision transformers
• Imagenet-trained CNNs are biased towards texture; increasing shape bias improves 

accuracy and robustness, ICLR 2018
• Shape and texture bias for visual recognition based on CNN features, ICLR 2021
• Intriguing properties of vision transformers. NeurIPS 2021
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Overview
• Semantic correspondence: pixel-level semantic matching
• Empirical study of two recent representations (Stable Diffusion, DINOv2) for 

zero-shot semantic correspondence
• Explore complementary features and achieve surprising performance on 

benchmark datasets (70.5% relative improvement over SOTA on SPair-71k)
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Motivation
• Two lines of work

• Motivation: 
• Text-to-image generative models can generate instances of varying poses, 

appearances, and at different scenes → suggesting its potential of fine-grained, 
cross-image semantic understanding (not only instance-level information)

• Properties of different layers, timesteps; comparison with other representations 

DINO features for zeo-shot semantic correspondence [1]

[1] Amir et al. Deep vit features as dense visual descriptors. arXiv, 2021
[2] Xu et al.  Open-vocabulary panoptic segmentation with text-to-image diffusion models. CVPR 2023

Diffusion features for panoptic segmentation (ODISE) [2]
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Extracting SD Features
• Add noise to the given image, run a single 

denoising step using the latent code
• Extract features from UNet Decoder (similar 

to ODISE)
• 4 blocks x 3 layers/block = 12 layers

• Sub-layers within a decoder layer
• Feature map: output of decoder layer
• Decoder features are better than encoder 

features & sub-layer within decoder layer 
(res/attn)
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Qualitative Analysis of Stale Diffusion Features

(Top) Visualization of first 3 channel of PCA features
(Bottom) Visualization of cluster & matching results

+ +
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▪ Promising results
▪ Earlier layer (layer 2, 5) 

lower resolution and 
contains more semantic 
information; 

▪ Last layer (layer 11) 
resolution is higher but 
focuses more on the 
appearance

▪ We ensemble features from 
early and intermediate 
layers (2, 5, 8) to trade-off 
between semantics and 
resolution, and apply co-
PCA to reduce the 
dimension of features



Extracting DINOv2 Features
• Different layers/facets of DINO ViT affects correspondence

• For DINOv2, best performance is achieved by the “token” facet from the 
last (11th) layer, different from DINO
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• Quantitative analysis of SD and DINOv2 features

• Are these two features complementary?
• 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = (𝛼𝛼 𝐹𝐹𝑆𝑆𝑆𝑆 2, 1 − 𝛼𝛼 𝐹𝐹𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷2 2); with different 𝛼𝛼:

Fusing DINOv2 and SD Features



1.

2.

3 

Fusion and Complement of Two Features

1. For easy case, both two features 
can find plausible correspondence
2. When textual signal is absent, DINOv2 
fails while SD still capture shape prior

3. For challenging cases
▪ SD features generate smooth correspondences and have 

strong sense of spatial layout, but obtain inaccurate pixel 
level matching whereas 

DINOv2 generates sparse but accurate matches. 13

PCA visualization Pixelwise correspondence



Quantitative Analysis on Fusion
• Smoothness of semantic flow fields on TSS dataset

• Non-redundancy of SD and DINOv2 features

I. Sample visualization of the flow fields                    II. First-order difference (lower indicates smoother)

III. Distribution of different outcomes (under 2 datasets and 3 PCK levels)  
14

• In most settings, one feature 
succeeds while the other 
fails in 20~30% of total 
cases (row 2 and 3)

• SD and DINOv2 have a 
substantial amount of non-
redundant information.



Discussions on Feature Behavior
• Causes for distinct behaviors of SD and DINOv2 feature maps:

• Training paradigm:
• Text-to-image synthesis -- Self-supervised learning

• Training data:
• Text-image pairs -- Image only

• Architecture:
• Conv-based UNet -- ViT

• More discussions in our paper: different SD and DINO variants
• What else can we do with the observation?
• Offset the limitations of DINOv2 features with

• Bilateral filter -> spatial coherence
• Ensemble early layer -> spatial awareness
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Supervised Setting
• Train a bottleneck layer on top of the extracted features, 
• Guided by the CLIP-style symmetric cross entropy loss with respect to 

corresponding keypoints [1] on Spair-71k

[1] Luo et al. Diffusion hyperfeatures: searching through time and space for semantic correspondence. NeurIPS, 2023.

• Improvement over previous methods (*: fine-tuned backbone) 
• Effectiveness of fusion also applies to supervised setting
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Application: Instance Swapping
TargetSource

1.

2.

3.

Given the source and target images
1. Build dense correspondence map 
with the extracted features (same color 
indicates matching)
2. Initial swapping result with the 
correspondence map
3. A diffusion-based refinement process 
yields more plausible result

▪ Invert the initial image with DDIM inversion
▪ Run DDIM denoising sampling to extract 

the spatial features of each timestep
▪ Generate the refined image with the 

prompt “A high quality image of [CAT]” 
where we also inject the extracted spatial 
features
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Instance Swapping
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(a) The relative size of instance of interest is tiny in the image (limited by the 
resolution of the extracted features)
(b) Artifacts introduced by DDIM inversion

Instance Swapping (Failure Cases)
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Limitations
• Speed (1s per image on single RTX 3090 GPU) 
• Resolution (1/16 of the input resolution, not flexible)
• Sometimes struggle with semantically similar points (especially 

under large viewpoint variation)

SD+DINO SD+DINO (Supervised) 20



Summary

• Stable Diffusion (SD) features shows great potential for semantic 
and dense correspondence, on par with SOTA self-supervised 
learning representations (DINOv2)

• Two features have different properties and naturally complement 
each other, and a simple fusion strategy can achieve the best of both 
worlds

• Significant improvement of semantic correspondence over previous 
SOTA on both zero-shot and supervised settings

• Instance swapping with high-quality correspondence
21



SD+DINO SD+DINO (Supervised) Ours

Telling Left from Right: Identifying 
Geometry-Aware Semantic Correspondence

arxiv 2023



Background
• Semantic correspondence (definition)
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Background
• Semantic correspondence (definition)
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Background
• Semantic correspondence 
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Background
• Challenges in semantic correspondence

26
from large intra-class variations to different backgrounds, lighting, or viewpoints. 



Background
• Semantic correspondence
• Pre-trained vision models

[1] ASIC: Aligning Sparse in-the-wild Image Collections. ICCV, 2023.
[2] CATs++: Boosting Cost Aggregation With Convolutions and Transformers. TPAMI, 2022.
[3] Emergent Correspondance from Image Diffusion. NeurIPS, 2023.
[4] DINOv2: Learning Robust Visual Features without Supervision. Arxiv, 2023.
[5] A Tale of Two Features: Stable Diffusion Complements DINO for Zero-Shot Semantic Correspondence. NeurIPS, 2023.
[6] Diffusion Hyperfeatures: Searching Through Time and Space for Semantic Correspondence. NeurIPS, 2023.

ASIC [1], unsupervised SOTA

CATs++ [2], supervised SOTA 
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Background
• Semantic correspondence
• Pre-trained vision models

[1] ASIC: Aligning Sparse in-the-wild Image Collections. ICCV, 2023.
[2] CATs++: Boosting Cost Aggregation With Convolutions and Transformers. TPAMI, 2022.
[3] Emergent Correspondance from Image Diffusion. NeurIPS, 2023.
[4] DINOv2: Learning Robust Visual Features without Supervision. Arxiv, 2023.
[5] A Tale of Two Features: Stable Diffusion Complements DINO for Zero-Shot Semantic Correspondence. NeurIPS, 2023.
[6] Diffusion Hyperfeatures: Searching Through Time and Space for Semantic Correspondence. NeurIPS, 2023.

ASIC [1], previous unsupervised 

CATs++ [2], previous supervised 

(a) SD+DINO [5] struggles at “telling left from right” (red solid lines).
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Background
• Semantic correspondence
• Pre-trained vision models

[1] ASIC: Aligning Sparse in-the-wild Image Collections. ICCV, 2023.
[2] CATs++: Boosting Cost Aggregation With Convolutions and Transformers. TPAMI, 2022.
[3] Emergent Correspondance from Image Diffusion. NeurIPS, 2023.
[4] DINOv2: Learning Robust Visual Features without Supervision. Arxiv, 2023.
[5] A Tale of Two Features: Stable Diffusion Complements DINO for Zero-Shot Semantic Correspondence. NeurIPS, 2023.
[6] Diffusion Hyperfeatures: Searching Through Time and Space for Semantic Correspondence. NeurIPS, 2023.

(a) SD+DINO [5] struggles at “telling left from right” (red solid lines).

(b) Performance gap in the two sets. Note Geo. Set accounts for 60% of total keypoint pairs in SPair-71k and 45% in AP-10K.
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Geometric Aware SD/DINO Features
• Geo-aware semantic correspondence

(a) Semantically-similar keypoint subgroups in images.

e.g., a group in cat category could be: 
𝒢𝒢paws = {𝐩𝐩 paws, front left , 𝐩𝐩 paws, front right ,
𝐩𝐩 paws, rear left , 𝐩𝐩(paws, rear right)}

30



Geometric Aware SD/DINO Features
• Geo-aware semantic correspondence to identify ambiguities

𝐩𝐩𝐢𝐢𝐹𝐹
𝐩𝐩𝐢𝐢𝑡𝑡

𝐩𝐩𝐣𝐣𝑡𝑡

(a) Semantically-similar keypoint subgroups in images. (b) Annotations of geo-aware semantic correspondence (yellow lines).

e.g., a group in cat category could be: 
𝒢𝒢paws = {𝐩𝐩 paws,front left , 𝐩𝐩 paws,front right ,
𝐩𝐩 paws,rear left , 𝐩𝐩(paws,rear right)}

⟨𝐩𝐩𝐢𝐢𝐹𝐹 ,𝐩𝐩𝐢𝐢𝑡𝑡⟩ is considered as a 
“geometry-aware” correspondence if: 
1. 𝐩𝐩𝐢𝐢𝐹𝐹 ∈ 𝒢𝒢𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝐹𝐹 , 𝐩𝐩𝐢𝐢𝑡𝑡 ∈ 𝒢𝒢𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡 ,
2. ∃ 𝐣𝐣 ≠ 𝐢𝐢 s. t. p𝐣𝐣𝑡𝑡 ∈ 𝒢𝒢𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑡𝑡
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Geometric Aware SD/DINO Features
• Evaluation on the geometry-aware subset

[1] Emergent Correspondance from Image Diffusion. NeurIPS, 2023.
[2] DINOv2: Learning Robust Visual Features without Supervision. Arxiv, 2023.
[3] A Tale of Two Features: Stable Diffusion Complements DINO for Zero-Shot Semantic Correspondence. NeurIPS, 2023.

(a) Per-category 
performance on 
geo-aware set.
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Geometric Aware SD/DINO Features
• Evaluation on the geometry-aware subset

• Sensitivity to pose variation

[1] Emergent Correspondance from Image Diffusion. NeurIPS, 2023.
[2] DINOv2: Learning Robust Visual Features without Supervision. Arxiv, 2023.
[3] A Tale of Two Features: Stable Diffusion Complements DINO for Zero-Shot Semantic Correspondence. NeurIPS, 2023.

(a) Per-category 
performance on 
geo-aware set.

(b) Sensitivity to pose 
variation (higher value 
= more sensitivity).

Divide 5 sets by azimuth difference
Performance on the five subsets:
𝒜𝒜 = {𝐚𝐚𝟎𝟎, 𝐚𝐚𝟏𝟏, . . . , 𝐚𝐚𝟒𝟒}

Normalized relative difference:

𝐝𝐝 =
max(𝒜𝒜) − min(𝒜𝒜)

max(𝒜𝒜)

33



Geometric Aware SD/DINO Features
• Global pose awareness of deep features

Front Back Left Right
Generated Pose Template Set

Source Image 𝐈𝐈s Instance Mask 𝐌𝐌s

𝐈𝐈𝐌𝐌𝐃𝐃F 𝐈𝐈𝐌𝐌𝐃𝐃B
𝐈𝐈𝐌𝐌𝐃𝐃L 𝐈𝐈𝐌𝐌𝐃𝐃R

Left

𝐚𝐚𝐚𝐚𝐚𝐚
𝐦𝐦𝐢𝐢𝐦𝐦Predict

pose

NN𝐅𝐅 𝐩𝐩

𝐩𝐩

𝐝𝐝(𝐩𝐩) = || 𝐅𝐅𝒔𝒔(𝐩𝐩) − 𝐅𝐅𝒕𝒕(NN𝐅𝐅 𝐩𝐩 )|| 2
�
𝐩𝐩∈𝐌𝐌s

𝐝𝐝(𝐩𝐩)

(a) Rough pose prediction with feature distance. 34

Manually annotated 100 cat images from SPair-71k
with pose labels {left, right, front, and back}



Geometric Aware SD/DINO Features
• Global pose awareness of deep features

Front Back Left Right
Generated Pose Template Set

Source Image 𝐈𝐈s Instance Mask 𝐌𝐌s

𝐈𝐈𝐌𝐌𝐃𝐃F 𝐈𝐈𝐌𝐌𝐃𝐃B
𝐈𝐈𝐌𝐌𝐃𝐃L 𝐈𝐈𝐌𝐌𝐃𝐃R

Left

𝐚𝐚𝐚𝐚𝐚𝐚
𝐦𝐦𝐢𝐢𝐦𝐦Predict

pose

NN𝐅𝐅 𝐩𝐩

𝐩𝐩

𝐝𝐝(𝐩𝐩) = || 𝐅𝐅𝒔𝒔(𝐩𝐩) − 𝐅𝐅𝒕𝒕(NN𝐅𝐅 𝐩𝐩 )|| 2
�
𝐩𝐩∈𝐌𝐌s

𝐝𝐝(𝐩𝐩)

(a) Rough pose prediction with feature distance.

(b) Zero-shot rough pose prediction result with instance 
matching distance (IDM). We manually annotated 100 cat 
images from SPair-71k with rough pose labels {left, right, 
front, and back} and report the accuracy of predicting left 
or right (L/R), front or back (F/B), either of the two cases 
(L/R or F/B), and one of the four directions (L/R/F/B).

35

Deep features are aware of global pose 
DINO v2 performs on F/B but not L/R
SD performs well on F/B and L/R
SD+DINO performs best



Improving Geo-Aware Semantic Correspondence

• Zero-shot setting: test-time adaptive pose alignment

𝐈𝐈𝐌𝐌𝐃𝐃ori 𝐈𝐈𝐌𝐌𝐃𝐃flip

Align Viewpoint

Source Image Target Image Augmented Pose

Compare

(a) Adaptive pose alignment with feature space distance.
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Improving Geo-Aware Semantic Correspondence

• Test-time adaptive pose alignment  (using a set of pose-variant 
augmentations, e.g., flip, rotations)

𝐈𝐈𝐌𝐌𝐃𝐃ori 𝐈𝐈𝐌𝐌𝐃𝐃flip

Align Viewpoint

Source Image Target Image Augmented Pose

Compare

(a) Adaptive pose alignment with feature space distance. (b) Qualitative results of the adaptive alignment.
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• Supervised framework

Improving Geo-Aware Semantic Correspondence

Pose-variant 
Pair 

Augmentation

SD/
DINO

SD/
DINO

𝐟𝐟(·)

𝐟𝐟(·)

Drop
out

Drop
out

Feature
Space

Dropout
Processed

Feature Maps
Similarity

Map

Apply window

Soft 
argmax

�𝐩𝐩𝑖𝑖
𝑡𝑡

�𝐩𝐩𝑖𝑖
𝑡𝑡

(𝐩𝐩𝑖𝑖𝑡𝑡 + 𝜖𝜖)
Perturbed

G.T. Position

|| ||𝟐𝟐−

Predicted
Point 

Position

Training

Inference

�𝐅𝐅𝑡𝑡

�𝐅𝐅𝐹𝐹(𝐩𝐩𝒊𝒊𝒔𝒔) 𝑆𝑆𝑖𝑖

Predicted
Point 

Position

ℒdense
�𝐅𝐅𝐹𝐹

(a) (Left) previous supervised methods [1,2] with a sparse training objective. (Right) an overview of our supervised method

[1] Diffusion Hyperfeatures: Searching Through Time and Space for Semantic Correspondence. NeurIPS, 2023.
[2] A Tale of Two Features: Stable Diffusion Complements DINO for Zero-Shot Semantic Correspondence. NeurIPS, 2023. 38



Semantic Correspondence on AP-10K
• AP-10K, in-the-wild animal pose estimation dataset, 10,015 images, across 

23 families and 54 species
• Construct a benchmark: 261k training, 17k validation, 36k testing image pairs
• Testing setting: intra-species, cross-species, cross-family  

(a) Sample image pairs from AP-10K semantic correspondence benchmark.
AP-10K: A Benchmark for Animal Pose Estimation in the Wild. NeurIPS D&B Track, 2021. 39



Quantitative Results
(a) Quantitative comparison across different datasets (standard) and PCK levels.

(b) Quantitative comparison across 
different datasets (Geo.) and PCK levels.

(c) Ablation study on the Spair-71k standard and 
the geometry-aware sets. 

40



Qualitative Results

(a) Qualitative comparison with state-of-the-art methods in cases with extreme viewpoint variations.

(b) Visualization of similarity map. The query and predicted points are red, and the keypoint supervision of the “chair” category is blue. 41



Qualitative Results on SPair-71k

SD+DINO SD+DINO (S) Ours

42



Qualitative Results on AP-10K Intra-Species

SD+DINO SD+DINO (S) Ours
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Summary

• Identify the problem of geometry-aware semantic correspondence

• Improve geometric awareness of the features in unsupervised and 
supervised setting

• Introduce a large-scale and challenging benchmark

• Boosts the performance on multiple benchmark datasets, especially 
on geometry-aware subset, achieves 85.6 PCK@0.10 on Spair-71k 
(15% gain over SOTA).

44
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Exploiting Diffusion Prior for 
Generalizable Pixel-Level 
Semantic Prediction
CVPR 2024

Hsin-Ying Lee1 Hung-Yu Tseng2 Hsin-Ying Lee3 Ming-Hsuan Yang1.,4

1UC Merced      2Meta     3Snap     4Google Research
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Real-world images

Normal Depth Segmentation
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Generated images

Pixel-Level/Dense Semantic Prediction

Image properties, e.g., normal, depth, segmentation, are important for image understanding
Existing generative models performs well on real-world images but not on generated images
How to adapt LTM for new task and maintain generalization?

• Address mismatch between deterministic prediction tasks and stochastic T2I model
• Preserve generalizability



Adapt Diffusion Models for Prediction?

• Diffusion models are inherently stochastic.

• Balance between generalizability and learning new tasks should be maintained.
Problems

with injectionstrong guidance weak guidance

Inversion Feature Injection Concatenation

Not applicable due to 
extra layers

Stochasticity: sampling initial noise and adding additional noise in the generation process
For deterministic prediction tasks, existing methods of I2I translation cannot be applied effectively

49

Naïve solution: consider dense prediction as an image-to-image (I2I) problem using diffusion models

surface normal



Diffusion Models as Prior (DMP)
• Re-formulating the diffusion process with the blending perspective

OutputsInputs

Diffusion

Generation

Interpolation

Solution

𝑥𝑥 : input 𝑦𝑦: output latent

Diffusion and generation process are entirely deterministic.

50

original

Training with interpolations of inputs and outputs
Diffusion: morphing of output to input images
Generation: demorphing input to output images 

𝑥𝑥 and 𝑦𝑦 are always paired



Low-Rank 
Adaptation

+
U-Net

v-prediction

• Fine-tuning with low-rank adaptation to preserve generalizability

• Training to predict v-prediction 

Generation

Training

Diffusion Models as Prior
Solution

Fine-tune a pre-trained T2I model with LoRA and inject it for v prediction
Avoid extra noise in the generation process with deterministic sampling



Datasets and Setups

• Generate diverse text descriptions using a MTF model with filter 
by Parmar

• Using LDM to synthesize images with text descriptions
• Pseudo ground truth:

• Omnidata v2 for normal
• ZoeDepth for depth, 
• EVA2 for semantic segmentation
• PIE-Net for image decomposition (albedo and  shading)

• Using experimental setups as Bhattad et al.

52



Test ShadingAlbedoNormal Depth Segmentation

Bedrooms
(in-domain)

DMPOff-the-shelf DMPOff-the-shelf DMPOff-the-shelf DMPOff-the-shelf

Diverse scenes
(out-of-domain)

Inputs DMPOff-the-shelf Inputs

Training
Bedrooms
(10K)

Arbitrary images
(out-of-domain)

Evaluation



Arbitrary Images

SPADE

DDIB

Off-the-shelf

DMP

Normal Depth Normal Depth Normal Depth Normal Depth

Inputs
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Performance Evaluation
• GAN-based: SPADE, DRIT++
• Diffusion-based: SDEdit, DDIB, IP2P (hard: fixed prompts), IP2P (learned: token inversion), VISII

Normal and depth estimation

Semantic segmentation

Intrinsic image decomposition

55



Surface Normal Estimation

Predicting inputs obtains high-quality images with low generalizability.
Predicting outputs obtains blurred images but generalizes well.
v-prediction has both of their benefits. 56

Fine-tune U-Net 
to predict signals



Surface Normal Estimation

5 steps maintains a good balance between the 
quality and generalizability. 

Single-step model is the denoising U-Net trained to directly 
predict outputs from inputs images, which struggles to handle 
arbitrary images.

Generation Steps

57



Applications
3D Photo Inpainting

DMPDefault Default DMP















Summary

• Adapt diffusion models for dense prediction across domains 
and achieve generalizability

• Address stochastic nature in diffusion process
• Reformulate the diffusion process a series of interpolation
• Achieve state-of-the-art results in dense prediction
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Single Insufficient-Coverage Casual Video

Skeleton

Novel View Rendering Novel ArticulationSkinning Weights

DreaMo: Articulated 3D Reconstruction From 
A Single Casual Video
arxiv 2024
Tao Tu1 Ming-Feng Li2 Chieh Hubert Lin3 Yen-Chi Cheng4 Min Sun1 Ming-Hsuan Yang4,5

1NTHU    2CMU    3UC Merced    4UIUC    5Google



Learning to Recover Non-Rigid 3D Shape

• Self-Supervised Co-Part Segmentation. W.-C. Hung et al. CVPR 2019

• Self-Supervised Single-View 3D Reconstruction X. Li et al. ECCV 2020

• Online Adaption for Consistent Mesh Reconstruction in the Wild. X. Li et al. NeurIPS 2020

• LASSIE: Learning Articulated Shapes from Sparse Image Ensemble. C.-H. Yao et al. NeurIPS 2022

• HI-LASSIE: High-Quality Articulated Shape and Skelton Discovery from Sparse Image Ensemble. C.-H. Yao. et al. CVPR 2023

• ARTIC3D: Learning Robust Articulated 3D Shapes from Noisy Web Image Collection. C.-H. Yao et al. NeurIPS 2023
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ACMR-vid 
test-time 
trained

After test-time tuning

Single image
CMR, ECCV 2020

No annotation
No known
camera pose
Without 3D template

Single video
ACMR, NeurIPS 2020

Temporal consistency

observed view other views
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LASSIE: Learning Articulated Shape from Sparse 
Image Ensemble via 3D Part Discovery

Image 
collection

3D Parts

Animations

NeurIPS 2022

63

Based on a few (10-30) images in the wild
Using a generic 3D skeleton
Discover 3D parts in a self-supervised manner



Hi-LASSIE: High-Fidelity Articulated Shape and Skeleton 
Discovery from Sparse Image Ensemble

Image ensemble

3D articulated shapes
(per-instance)

CVPR 2023

64

Automatically estimate class-specific skeleton 
Instance-specific optimization for high-quality results



ARTIC3D: Learning Robust Articulated 3D Shapes from 
Noisy Web Image Collections

Noisy web images 3D articulated shapes and texture Animated Fine-tuned 
animation

NeurIPS 2023
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Handle occlusion
Diffusion-guided optimization 
Incorporate 3D diffusion priors in 3D surface optimization



Diffusion Models for 3D

66

• Pre-trained T2I diffusion models generate realistic 3D images

By Seoyeon Stella Yang



Existing Methods for 3D Animal Reconstruction

3D Animal Reconstruction
• Existing methods learn to reconstruct from large image 

collections [1-5]
• Require a large dataset for each category (e.g., 6000 images for bird [1])

6000 images!!

[1] A. Kanazawa, et al. “Learning Category-Specific Mesh Reconstruction from Image Collections.” ECCV 2018

[1] A. Kanazawa et al. “Learning Category-Specific Mesh Reconstruction from Image Collections.” ECCV 2018
[2] S. Goel, et al. “Shape and viewpoints without keypoints.” ECCV 2020
[3] X. Li, et al. “Self-supervised Single-view 3D Reconstruction via Semantic Consistency.” ECCV 2020
[4] S. Wu et al. “DOVE: Learning Deformable 3D Objects by Watching Videos.” IJCV 2023
[5] S. Wu et al. “MagicPony: Learning Articulated 3D Animals in the Wild.” CVPR 2023
[6] C.-H. Yao, et al. “LASSIE: Learning Articulated Shape from Sparse Image Ensemble via 3D Part Discovery.” NeurIPS 2022
[7] C.-H. Yao et al. “Hi-LASSIE: High-Fidelity Articulated Shape and Skeleton Discovery from Sparse Image Ensemble.” CVPR 2023
[8] G. Yang, et al. “Building animatable 3d neural models from many casual videos.” CVPR. 2022.
[9] R. Liu, et al. “Zero-1-to-3: Zero-shot One Image to 3D Object.” ICCV 2023
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Existing Methods for 3D Animal Reconstruction

3D Animal Reconstruction
• Existing methods learn to reconstruct from large image 

collections [1-5]
• Require a large dataset for each category (e.g., 6000 images for bird [1])

• How to reduce the amount of required data?
• [6-7] target on recontructing animals with sparse image collections
• Less natural result shapes and articulations

[6] C.-H. Yao, et al. “LASSIE: Learning Articulated Shape from Sparse Image Ensemble via 3D Part Discovery.” NeurIPS 2022

~30 images

68

[1] A. Kanazawa et al. “Learning Category-Specific Mesh Reconstruction from Image Collections.” ECCV 2018
[2] S. Goel, et al. “Shape and viewpoints without keypoints.” ECCV 2020
[3] X. Li, et al. “Self-supervised Single-view 3D Reconstruction via Semantic Consistency.” ECCV 2020
[4] S. Wu et al. “DOVE: Learning Deformable 3D Objects by Watching Videos.” IJCV 2023
[5] S. Wu et al. “MagicPony: Learning Articulated 3D Animals in the Wild.” CVPR 2023
[6] C.-H. Yao, et al. “LASSIE: Learning Articulated Shape from Sparse Image Ensemble via 3D Part Discovery.” NeurIPS 2022
[7] C.-H. Yao et al. “Hi-LASSIE: High-Fidelity Articulated Shape and Skeleton Discovery from Sparse Image Ensemble.” CVPR 2023
[8] G. Yang, et al. “Building animatable 3d neural models from many casual videos.” CVPR. 2022.
[9] R. Liu, et al. “Zero-1-to-3: Zero-shot One Image to 3D Object.” ICCV 2023



Existing Methods for 3D Animal Reconstruction

3D Animal Reconstruction
• Existing methods learn to reconstruct from large image 

collections [1-5]
• Require a large dataset for each category (e.g., 6000 images for bird [1])

• How to reduce the amount of required data?
• [6-7] target on recontructing animals with sparse image collections
• Less natural shapes and articulations

• Learn from videos
• Videos offer more temporal information than still images, aiding the 

model in learning articulation through continuous movements
• BANMO [8] shows promising reconstruction results from ~10 casually 

captured videos
• Require videos with dense camera viewpoint coverage

[8] G. Yang, et al. “Building animatable 3d neural models from many casual videos.” CVPR. 2022.
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[3] X. Li, et al. “Self-supervised Single-view 3D Reconstruction via Semantic Consistency.” ECCV 2020
[4] S. Wu et al. “DOVE: Learning Deformable 3D Objects by Watching Videos.” IJCV 2023
[5] S. Wu et al. “MagicPony: Learning Articulated 3D Animals in the Wild.” CVPR 2023
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Existing Methods for 3D Animal Reconstruction

3D Animal Reconstruction
• Existing methods learn to reconstruct from large image 

collections [1-5]
• Require a large dataset for each category (e.g., 6000 images for bird [1])

• How to reduce the amount of required data?
• [6-7] target on recontructing animals with sparse image collections
• Less natural result shapes and articulations

• Learn from videos
• Videos offer more temporal information than still images, aiding the 

model in learning articulation through continuous movements
• BANMO [8] shows promising reconstruction results from ~10 casually 

captured videos
• Require videos with dense camera viewpoint coverage

• Could we directly reconstruct animals from single videos?

[8] G. Yang, et al. “Building animatable 3d neural models from many casual videos.” CVPR. 2022.
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Existing Methods for 3D Animal Reconstruction

3D Animal Reconstruction
• Existing methods learn to reconstruct from large image 

collections [1-5]
• Require a large dataset for each category (e.g., 6000 images for bird [1])

• How to reduce the amount of required data?
• [6-7] target on recontructing animals with sparse image collections
• Less natural result shapes and articulations

• Learn from videos
• Videos offer more temporal information than still images, aiding the 

model in learning articulation through continuous movements
• [8] shows promising reconstruction results from ~10 casually captured 

videos
• Require videos with dense camera viewpoint coverage

• Could we directly reconstruct animals from single videos?
• Hallucinating low-coverage regions using a view-conditioned diffussion 

model–– Zero-1-to-3 [9]

[8] G. Yang, et al. “Building animatable 3d neural models from many casual videos.” CVPR. 2022.
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[1] A. Kanazawa et al. “Learning Category-Specific Mesh Reconstruction from Image Collections.” ECCV 2018
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[3] X. Li, et al. “Self-supervised Single-view 3D Reconstruction via Semantic Consistency.” ECCV 2020
[4] S. Wu et al. “DOVE: Learning Deformable 3D Objects by Watching Videos.” IJCV 2023
[5] S. Wu et al. “MagicPony: Learning Articulated 3D Animals in the Wild.” CVPR 2023
[6] C.-H. Yao, et al. “LASSIE: Learning Articulated Shape from Sparse Image Ensemble via 3D Part Discovery.” NeurIPS 2022
[7] C.-H. Yao et al. “Hi-LASSIE: High-Fidelity Articulated Shape and Skeleton Discovery from Sparse Image Ensemble.” CVPR 2023
[8] G. Yang, et al. “Building animatable 3d neural models from many casual videos.” CVPR. 2022.
[9] R. Liu, et al. “Zero-1-to-3: Zero-shot One Image to 3D Object.” ICCV 2023



Existing Methods for 3D Animal Reconstruction

Zero-1-to-3
• Diffusion model for control of camera viewpoint in novel view synthesis

• 3D reconstruction of a static object from a single image by imagining different views

• Difficult to apply to moving and deformable objects such as animals

[9] R. Liu, et al. “Zero-1-to-3: Zero-shot One Image to 3D Object.” ICCV 2023
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Problem Formulation
• Goal: reconstructing an articulated 3D model from an Internet video

• Input: an Internet video capturing a deformable object

• Output: an articulated 3D model with skeleton, skinning weight, 3D shape, and color

• No pre-defined shape template from 3D scans

Articulated 3D Reconstruction From A Single Video

Skeleton Skinning Weights Shape & Color

DreaMo

A Single Casual Training Video
(Inadequate View Coverage)

(No template)
…
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Why Is It Important?
• Reconstructing arbitrary animals in 3D from the Internet can provide diverse 3D assets for 

various applications such as movie production, gaming, and virtual reality

Articulated 3D Reconstruction From A Single Video

Skeleton Skinning Weights Shape & Color

DreaMo

A Single Casual Training Video
(Inadequate View Coverage)

(No template)
…

Problem Formulation
• Goal: reconstructing an articulated 3D model from an Internet video

• Input: an Internet video capturing a deformable object

• Output: an articulated 3D model with skeleton, skinning weight, 3D shape, and color

• No pre-defined shape template from 3D scans
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Why Is It Important?

• Reconstructing arbitrary animals in 3D from the Internet can provide diverse 3D assets for various applications such as movie production, 
gaming, and virtual reality

Articulated 3D Reconstruction From A Single Video

Skeleton Skinning Weights Shape & Color

DreaMo

A Single Casual Training Video
(Inadequate View Coverage)

(No template)
…

Why Is It Challenging?
• Internet videos often lack sufficient view coverage for 3D reconstruction

• Reconstructing plausible 3D shapes without shape templates in such a demanding setting is 
difficult

Problem Formulation
• Goal: reconstructing an articulated 3D model from an Internet video

• Input: an Internet video capturing a deformable object

• Output: an articulated 3D model with skeleton, skinning weight, 3D shape, and color

• No pre-defined shape template from 3D scans
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Implicit 3D Model (Canonical Space)
• Represent a 3D reconstruction target in a resting pose

• Implicitly model the 3D shape and color by the neural radiance field [1]

Canonical Space V
(Time-invariant)

Warping Model
• Mapping between observation 

space and canonical space

• Object deformation
• Neural bones represent articulation [2]
• Linear blend skinning [3]

• Camera transformation
• Global transformation model Observation Space W

(Time-dependent)

Backward Warp.

Forward Warp.

Neural
Bone

Neural Implicit Model

density
color

[1] B. Mildenhall, et al. Nerf: Representing scenes as neural radiance fields for view synthesis. ECCV. 2020.
[2] G. Yang, et al. Building animatable 3d neural models from many casual videos. CVPR. 2022.
[3] A. Jacobson, et al. Skinning: Real-time shape deformation. SIGGRAPH Courses. 2014.

View t

DreaMo Overview
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Training-view Reconstruction
• Insufficient for reconstructing plausible 

shapes in low-coverage regions

Volume
Rendering

View t

Lrecon

Training-View Reconstruction

Zero-1-to-3

Unseen Views
For Each Object Pose

Lsds

Diffusion-Guided Hallucination

Diffusion-guided Hallucination
• Leverage zero-1-to-3 conditioned on source video frame 

and came pose to synthesize novel view
• Distill synthetic supervisions into the 3D reconstruction 

model using Score Distillation Sampling (SDS)
• Hallucinate unseen views for each object pose

[4] R. Liu, et al. "Zero-1-to-3: 597 Zero-shot one image to 3d object." ICCV. 2023.
[5] B. Poole, et al. "Dreamfusion: Text-to-3d using 2d diffusion." ICLR. 2023.

How to Address The Low-Coverage Regions?

Fixed
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Regularization
• Novel-view cycle consistency

• Smooth articulation

• Surface constraint

Canonical Space V
(Time-invariant)

Observation Space W
(Time-dependent)

tt-1

Backward Warp G

Forward Warp FLncyc

Unseen View

How to Avoid Irregular Reconstructed Shapes?

Lncyc = �
𝑛𝑛

𝜏𝜏𝑛𝑛 𝑤𝑤𝑛𝑛 − 𝐹𝐹(𝐺𝐺 𝑤𝑤𝑛𝑛, 𝑡𝑡 , 𝑡𝑡) 2

𝑤𝑤𝑛𝑛

Minimize the warping error to encourage the inverse 
relationship between forward and backward 
warpings for unseen views
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Sample a point along the ray 
from a novel view



Regularization
• Novel-view cycle consistency

• Smooth articulation

• Surface constraint

Canonical Space V
(Time-invariant)

Observation Space W
(Time-dependent)

tt-1

t -2 t -1

t
t t +1

How To Avoid Irregular Recontructed Shapes?
How to Avoid Irregular Reconstructed Shapes?

Lsmooth = �
𝑏𝑏=1,𝑡𝑡=1

𝐵𝐵,𝑇𝑇−1 ang 𝑹𝑹𝑏𝑏𝑡𝑡 ,𝑹𝑹𝑏𝑏𝑡𝑡+1 + 𝒔𝒔𝑏𝑏𝑡𝑡 − 𝒔𝒔𝑏𝑏𝑡𝑡+1 2
𝐵𝐵(𝑇𝑇 − 1)

Lsmooth

Regularize variations in rotations R and 
translations s between consecutive time steps
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Learned transitions of bones in 
the low-coverage or self-
occluded regions often exhibit 
unnatural jiggles

Introduce smooth transition for
smooth bone motion 



Regularization
• Novel-view cycle consistency

• Smooth articulation

• Surface constraint

Canonical Space V
(Time-invariant)

Observation Space W
(Time-dependent)

tt-1

Lsurf

How To Avoid Irregular Recontructed Shapes?
How to Avoid Irregular Reconstructed Shapes?

Lsurf = max 𝛿𝛿, 0 2

Encourage the neural bones to 
stay within the learned surface
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Neural bones may scatter all over the 
space

Add constraints to keep
neural bones beneath learned surface



Skeleton Extraction From The Implicit Model
• Extract rest-pose mesh from the implicit 3D model using marching cube

• Assign each vertex (skin point) to the neural bone of the highest skinning weight

• Establish an edge between bones if there is a sufficient skin point connection

Skinning Weights

B bones
…

Vertex Connection

Neural Bones

Generate Skeleton

Rest-pose Mesh

Interpretable Skeleton Generation
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Experimental Results

Self-collected Dataset
• 42 animal video clips from the Internet

• 28 different species

• Average azimuth viewpoint coverage: 31%

• Average video duration: 15.7 seconds

Some image crops of the target subjects from the dataset.

Experimental Results
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Novel View Rendering (RGB & Depth)

BA
N

M
o 

[2
]

D
re

aM
o 

(o
ur

s)

[2] G. Yang, et al. Building animatable 3d neural models from many casual videos. CVPR. 2022.
Experimental Results
Experimental Results
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3D Reconstructed Shape

Experimental ResultsExperimental Results
Experimental Results
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[2] G. Yang, et al. Building animatable 3d neural models from many casual videos. CVPR. 2022.
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Skeleton Generation & 3D Model Manipulation

Experimental Results
Experimental Results
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Advantages
• Require only one easily accessible casual video from the Internet

• Template-free, eliminating the need for 3D scans

Main Technical Contributions
• Diffusion-guided hallucination

• Tailored regularizations to prevent irregular 3D shape

• Simple strategy for interpretable skeleton generation

Skeleton Skinning Weights Shape & Color

DreaMo

A Single Casual Training Video
(Inadequate View Coverage)

(No template)
…

Articulated 3D reconstruction through jointly training-view reconstruction, unseen view hallucination, 
and tailored regularizations from a single casual video with inadequate view coverage
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Summary



Google VideoPoet
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Text-to-video
Image-to-video
Video editing
Stylization
Inpainting






Google VideoPrism
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