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Diffusion Models

 Text-to-image/video synthesis
* Imagen, stable diffusion, DreamBooth, diffusion transformer, SORA

e Text-to-3D

« Dreambooth3D, DreamFusion, Magic3D, ProlificDreamer, Score Jacobian Chaining

« 3D shape
« 3DiM, latent diffusion model, SparseFusion, GeNVS, BANMo, Zero-1-2-3

« Semantic correspondence
 Diffusion features (DIFT)

« Segmentation
* Open vocabular panoptic segmentation (ODISE)

L. Yang et al. Diffusion models: A Comprehensive Survey of Methods and
Applications. ACM Computing Surveys, 2024.



Learning with Diffusion Models

 Exploiting diffusion features for correspondence (NeurlPS 2023)
« Geometric-aware semantic correspondence (CVPR 2024)

» Dense prediction with diffusion prior (CVPR 2024)

« DreaMo: Using diffusion prior for 3D reconstruction (arxiv 2024)
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All about Features

e ...->SIFT -> CNN -> Vision Transformers -> Diffusion Models
* CNN features

« Layers, visualization
» Exploit features from different layers

* Response maps

+ Classification activation map (CAM)
* ViT features
« DINOVIT

* Properties of CNNs and vision transformers

» Imagenet-trained CNNs are biased towards texture; increasing shape bias improves
accuracy and robustness, ICLR 2018

« Shape and texture bias for visual recognition based on CNN features, ICLR 2021
* Intriguing properties of vision transformers. NeurlPS 2021



Overview

« Semantic correspondence: pixel-level semantic matching ¥

« Empirical study of two recent representations (Stable Diffusion, DINOv2) for
zero-shot semantic correspondence

« Explore complementary features and achieve surprising performance on
benchmark datasets (70.5% relative improvement over SOTA on SPair-71k)

Source Target




Motivation

 Two lines of work

Ve
Clustering Based Framework

DINO features for zeo-shot semantic correspondence [1]

 Motivation:
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Diffusion features for panoptic segmentation (ODISE) [2]

« Text-to-image generative models can generate instances of varying poses,
appearances, and at different scenes — suggesting its potential of fine-grained,
cross-image semantic understanding (not only instance-level information)

* Properties of different layers, timesteps; comparison with other representations

[1] Amir et al. Deep vit features as dense visual descriptors. arXiv, 2021

[2] Xu et al. Open-vocabulary panoptic segmentation with text-to-image diffusion models. CVPR 2023



Latent
AxXHXW

Extracting SD Features

« Add noise to the given image, run a single
denoising step using the latent code

« Extract features from UNet Decoder (similar =g S8 ‘
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« Sub-layers within a decoder layer
* Feature map: output of decoder layer

 Decoder features are better than encoder
features & sub-layer within decoder layer
(res/attn)
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Qualitative Analysis of Stale Diffusion Features

Input image

Layer2 <~ Layer5

+ Layer8

Layer 11

(Top) Visualization of first 3 channel of PCA features

(Bottom) Visualization of cluster & matching results

Layer 2+5+8

= Promising results

= Earlier layer (layer 2, 5)
lower resolution and
contains more semantic
information;

= Last layer (layer 11)
resolution is higher but
focuses more on the
appearance

= We ensemble features from
early and intermediate
layers (2, 5, 8) to trade-off
between semantics and
resolution, and apply co-
PCA to reduce the
dimension of features




Extracting DINOv2 Features

» Different layers/facets of DINO VIT affects correspondence
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* For DINOv2, best performance is achieved by the “token” facet from the
last (11th) layer, different from DINO

Layer 117 Layer 91
Model Token Key Query Value Token Key Query Value
25.8 309 314 299 27.7

DINOv1-ViT-S/8 28.8 304 269
DINOv2-ViT-S/14 ~ 52.7 303  30.6 47.1 45.5 127 132 40.6
DINOv2-ViT-B/14  55.7 426  40.7 534 508 252 253 46.0




Fusing DINOv2 and SD Features

* Quantitative analysis of SD and DINOvZ2 features

Method

Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Dog Horse Motor Person Plant Sheep Train TV All

UN DINOVI-VIT-S/8 [2]
DINOv2-ViT-B/14

57.2 24.1 67.4 245 26.8
72.7 62.0 85.2 41.3 404

Stable Diffusion (Ours) 62.2 55.5 81.3 32.0 43.3
Fuse-ViT-B/14 (Ours) 73.1 62.9 86.4 39.8 52.8

29.0 27.1 52.1 15.7 42.4 43.3 30.1
523 51.571.1 36.2 67.1 64.7 67.6
49.2 46.5 75.0 34.3 72.3 54.2 60.6

55.354.178.4 45.5 77.2 65.3 70.0

23.2
61.0

40.7
68.2

51.3
62.7

51.7
69.0

16.6 24.1 31.0 249333
30.7 62.0 543 242554
492 545 63.6 47.754.4
57.1 68.0 67.0 53.8 62.9

« Are these two features complementary?
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Fusion and Complement of Two Features

Pixelwise correspondence

PCA visualization

| PR
2.
Input image Stable Diffusion =~ DINOv2 Fused Inputimage  Stable Diffusion DINOv2  Fused
1. For easy case, both two features 3. For challenging cases
can find plausible correspondence = SD features generate smooth correspondences and have

strong sense of spatial layout, but obtain inaccurate pixel
level matching whereas

DINOvZ2 generates sparse but accurate matches. 13

2. When textual signal is absent, DINOv2
fails while SD still capture shape prior



Quantitative Analysis on Fusion

« Smoothness of semantic flow fields on TSS dataset
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[. Sample visualization of the flow fields
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Stable Diffusion DINOv2

Method FG3DCar| JODS|] Pascal] Avg.|
DINOv2-ViT-B/14 6.99 10.09 15.14 10.15
Stable Diffusion 3.48 7.87 8.44 5.90
Fuse-ViT-B/14 3.52 7.55 8.75 5.96
Ground Truth 2.22 5.20 4.06 3.40

II. First-order difference (lower indicates smoother)

* Non-redundancy of SD and DINOvZ2 features

SPair-71k, PCK@xk  PF-Pascal, PCK@kx In most settings, one feature
Cases 0.15 0.0 005 0.15 010 0.05 OO e 1o o
SD, DINO fails 21.7 292 445 5.6 10.0 27.1 cases (row 2 and 3)
SD fails, DINO correct 15.7 15.8 142 83 9.7 12.0 SD and DINOv2 have a
SD correct, DINO fails 14.0 153 158 11.1 12.7 16.8 substantial amount of non-
SD, DINO correct 48.6 397 255 75.0 676 442 redundant information.

III. Distribution of different outcomes (under 2 datasets and 3 PCK levels)

14



« Causes for distinct behaviors of SD and DINOv2 feature maps:
* Training paradigm:

« Text-to-image synthesis -- Self-supervised learning
 Training data:

« Text-image pairs -~ Image only
 Architecture:

« Conv-based UNet -- VIiT

* More discussions in our paper: different SD and DINO variants
* What else can we do with the observation?

o Offset the limitations of DINOv2 features with

* Bilateral filter -> spatial coherence
 Ensemble early layer -> spatial awareness



 Train a bottleneck layer on top of the extracted features,

« Guided by the CLIP-style symmetric cross entropy loss with respect to
corresponding keypoints [1] on Spair-71k

Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Dog Horse Motor Person Plant Sheep Train TV All
S SCOT [34] 349 20.7 63.8 21.1 43.5 27.321.363.1 20.0 429425 31.1 29.8 350 27.7 244 48.4 40.835.6
CATs* [9] 52.0 3477 72.2 343 499 57.543.666.5 244 63.2 56.5 52.0 426 41.7 43.0 33.6 72.6 58.049.9
PMNC* [30] 54.1 359749 36.5 42.1 48.840.072.6 21.1 67.6 58.1 50.5 40.1 54.1 43.3 357 74.5 599504
SCorrSAN™ [24] 57.1 40.3 78.3 38.1 51.8 57.847.167.9 25.2 71.363.9 493 453 49.8 48.8 403 77.7 69.755.3
CATs++* [10] 60.6 46.9 82.541.6 56.8 649504728 29.2 75.865.4 625 509 56.1 548 482 80.9 749599
DINOv2-ViT-B/14" 80.4 60.2 88.1 59.5 54.9 82.073.589.1 53.3 85.573.6 73.8 65.2 723 43.6 65.6 914 60.369.9
Stable Diffusion’ (Ours) 75.6 60.3 87.3 41.5 50.8 68.477.281.4 443 79.4 62.8 67.7 649 71.6 57.8 53.3 89.2 65.1 66.3
Fuse-ViT-B/147 (Ours) 81.2 66.9 91.6 61.4 57.4 85.383.190.8 54.5 88.575.1 80.2 719 779 60.7 68.9 92.4 65.874.6

* Improvement over previous methods (*: fine-tuned backbone)

 Effectiveness of fusion also applies to supervised setting

[1] Luo et al. Diffusion hyperfeatures: searching through time and space for semantic correspondence. NeurlPS, 2023.
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Application: Instance Swapping

Given the source and target images SO{H@ «
1. Build dense correspondence map

with the extracted features (same color
indicates matching)

2. Initial swapping result with the
correspondence map

3. A diffusion-based refinement process
yields more plausible result
= Invert the initial image with DDIM inversion

= Run DDIM denoising sampling to extract
the spatial features of each timestep

= Generate the refined image with the
prompt “A high quality image of [CAT]"
where we also inject the extracted spatial
features




Instance Swapping

Target
Source




Source Target SD DINOv2 Fused SD DINOv2 Fused
w/o refinement w/ refinement

(a) The relative size of instance of interest is tiny in the image (limited by the
resolution of the extracted features)

(b) Artifacts introduced by DDIM inversion

19



Limitations

« Speed (1s per image on single RTX 3090 GPU)
« Resolution (1/16 of the input resolution, not flexible)

« Sometimes struggle with semantically similar points (especially
under large V|ewp0|nt varlatlon)

SD+DINO SD+DINO (Supervised)

20



 Stable Diffusion (SD) features shows great potential for semantic
and dense correspondence, on par with SOTA self-supervised
learning representations (DINOv2)

* Two features have different properties and naturally complement
each other, and a simple fusion strategy can achieve the best of both
worlds

* Significant improvement of semantic correspondence over previous
SOTA on both zero-shot and supervised settings

* Instance swapping with high-quality correspondence



Telling Left from Right: Identifying
Geometry-Aware Semantic Correspondence
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Background

« Semantic correspondence (definition)

23



Background

« Semantic correspondence (definition)
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Background

« Semantic correspondence
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Background

 Challenges in semantic correspondence

from large intra-class variations to different backgrounds, lighting, or viewpoints.

26



Background

« Semantic correspondence
* Pre-trained vision models

=
=
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Performance (PCK,, . @0.10)

DIFT [3] DINOv2 [4] SD+DINO Ours | DHF[6] SD+DINO(S) Ours(S)
[5] [5]

[1] ASIC: Aligning Sparse in-the-wild Image Collections. ICCV, 2023.

[2] CATs++: Boosting Cost Aggregation With Convolutions and Transformers. TPAMI, 2022.

[3] Emergent Correspondance from Image Diffusion. NeurlPS, 2023.

[4] DINOvV2: Learning Robust Visual Features without Supervision. Arxiv, 2023.

[5] A Tale of Two Features: Stable Diffusion Complements DINO for Zero-Shot Semantic Correspondence. NeurlPS, 2023.
[6] Diffusion Hyperfeatures: Searching Through Time and Space for Semantic Correspondence. NeurlPS, 2023.

CATs++ [2], supervised SOTA

ASIC [1], unsupervised SOTA
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Background

« Semantic correspondence
* Pre-trained vision models

=
=
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Performance (PCK,, . @0.10)

DIFT [3] DINOv2 [4] SD+DINO Ours | DHF[6] SD+DINO(S) Ours(S)
[5] [5]

[1] ASIC: Aligning Sparse in-the-wild Image Collections. ICCV, 2023.

[2] CATs++: Boosting Cost Aggregation With Convolutions and Transformers. TPAMI, 2022.

[3] Emergent Correspondance from Image Diffusion. NeurlPS, 2023.

[4] DINOvV2: Learning Robust Visual Features without Supervision. Arxiv, 2023.

[5] A Tale of Two Features: Stable Diffusion Complements DINO for Zero-Shot Semantic Correspondence. NeurlPS, 2023.
[6] Diffusion Hyperfeatures: Searching Through Time and Space for Semantic Correspondence. NeurlPS, 2023.

CATs++ [2], previous supervised

ASIC [1], previous unsupervised
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Background

« Semantic correspondence
* Pre-trained vision models

Geo. SPair-71k
__ mStd. SPair-71k
Geo. AP-10K
u Std. AP-10K
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DIFT [3] DINOv2 [4] SD+DINO Ours

5 5
(b) Performance gap in the two sets. Note Geo. Se& !‘;\ccounts for 60% of total keypoiH pairs in SPair-71k and 45% in AP-10K.

[1] ASIC: Aligning Sparse in-the-wild Image Collections. ICCV, 2023.

[2] CATs++: Boosting Cost Aggregation With Convolutions and Transformers. TPAMI, 2022.

[3] Emergent Correspondance from Image Diffusion. NeurlPS, 2023.

[4] DINOvV2: Learning Robust Visual Features without Supervision. Arxiv, 2023.

[5] A Tale of Two Features: Stable Diffusion Complements DINO for Zero-Shot Semantic Correspondence. NeurlPS, 2023.
[6] Diffusion Hyperfeatures: Searching Through Time and Space for Semantic Correspondence. NeurlPS, 2023.

DHF [6] SD+DINO(S] Ours(S)
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Geometric Aware SD/DINO Features

» Geo-aware semantic correspondence

(a) Semantically-similar keypoint subgroups in images.

e.g., a group in cat category could be:

gpaws — {p(paws, frontleft)r P(paws, front right)
P(paws, rear left), P(paws, rear right)}

30



Geometric Aware SD/DINO Features

« Geo-aware semantic correspondence to identify ambiguities

|
|
5
= —— O T, TN,
./H
[

(a) Semantically-similar keypoint subgroups in images. (b) Annotations of geo-aware semantic correspondence (yellow lines).

e.g., a group in cat category could be: (p; ,pi)is considered as a
Gpaws = {P(pawsfrontleft), P(paws front right), “‘geometry-aware” correspondence if:
P(paws,rear left), P(paws,rear right)} 1. p.ls (S g;art’ plt (S gzga‘rt’

2.3j #is.t.p; € Gpgre
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Geometric Aware SD/DINO Features

» Evaluation on the geometry-aware subset

(a) Per-category
performance on
geo-aware set
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[1] Emergent Correspondance from Image Diffusion. NeurlPS, 2023.
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[2] DINOv2: Learning Robust Visual Features without Supervision. Arxiv, 2023.



Geometric Aware SD/DINO Features

 Evaluation on the geometry-aware subset

1.0 T

s DIFT-Geo. = DIFT [1] DINOV2-Geo. DINOV2 [2] ‘
= 08 N SD+DINO-Geo. ® SD+DINO [3] N SD+DINO (S)-Geo. ESD+DINO (S) [3]
@ n e . L o . o I e T ———
1 anl o
2 0.6 i§ s | | I i§ S N1 N E— § ----------- § -~ (a) Per-category
g N l |\| N N N
& ANRA N 4 N N N NEN AN
N NEN NN NEN NEN NEN NN NEN N =—NEN NN NEN
g 02 +NEN NENE-- NI NENE-- XN NONE--NEY NENE--NEISTNENE-- NN NENE-
= TNEN NENE NEN NENE NENNENE NENNENE NENINERE NER!NER
= NIN NERE QAN NERE AN NENE RENINENE NEY NENE NAN/NIN
5,0 LNEN'NENE NENTNSNE NN NSNE NN NENE NSN NSNS NENFNEN
Plane Motorbike Dog Person TV All

« Sensitivity to pose variation

Divide 5 sets by azimuth difference . W SSD+DINO-Geo. ®SD+DINO SSD+DINO (S)-Geo. ® SD+DINO (S) ‘
Performance on the five subsets: S 08 1
A = {ag,aq,...,a4) g 0.6 |- (b) Sensitivity to pose
_ _ . S oa L variation (higher value
Normalized relative difference: p = more sensitivity).
max(A) — min(A £0% 7
_ max(A) — min(A) ;-

max (c/q) Aero Boat Motor Cow Dog Person All

[1] Emergent Correspondance from Image Diffusion. NeurlPS, 2023.
[2] DINOv2: Learning Robust Visual Features without Supervision. Arxiv, 2023.
[3] A Tale of Two Features: Stable Diffusion Complements DINO for Zero-Shot Semantic Correspondence. NeurlPS, 2023. 33



Geometric Aware SD/DINO Features

» Global pose awareness of deep features

Manually annotated 100 cat images from SPair-71k
Generated Pose Template Set . with pose labels {left, right, front, and back}

Right

Back

~

<
<«

pEMS f IMD; IMDg
L IMD, IMDyg

Predict | '8
min
pose

(_ Source Image I5  Instance Mask M* y [ Left ]

(a) Rough pose prediction with feature distance. 34



Geometric Aware SD/DINO Features

» Global pose awareness of deep features

Generated Pose Template Set

Back

Right

(_ Source Image IS

~

pEMS

A

IMD; IMDjg

<«

Instance Mask MS y

A’L IMD, IMDg

Predict | '8
min
pose

[ Left ]

(a) Rough pose prediction with feature distance.

Feature L/R F/B L/Ror F/B L/R/F/B
DINOvV2 63.8 100.0 75.0 51.0
SD 95.7 96.8 96.0 78.0
SD+DINO 98.6 100.0 99.0 84.0

(b) Zero-shot rough pose prediction result with instance
matching distance (IDM). We manually annotated 100 cat
images from SPair-71k with rough pose labels {left, right,
front, and back} and report the accuracy of predicting left
or right (L/R), front or back (F/B), either of the two cases
(L/R or F/B), and one of the four directions (L/R/F/B).

Deep features are aware of global pose
DINO v2 performs on F/B but not L/R
SD performs well on F/B and L/R
SD+DINO performs best

35



Improving Geo-Aware Semantic Correspondence

» Zero-shot setting: test-time adaptive pose alignment

—Align Viewpoint

Compare
IMDOI‘i 3 P > IMDfliD

Source Image Target Image Augmented Pose

(a) Adaptive pose alignment with feature space distance.

36



Improving Geo-Aware Semantic Correspondence

* Test-time adaptive pose alignment (using a set of pose-variant
augmentations, e.g., flip, rotations)

—Align Viewpoint
IMD,,; <« 2"P2C IMDp,,

Source Image Target Image Augmented Pose | - : = I
Original Image Pairs With Aligned Pose

(a) Adaptive pose alignment with feature space distance. (b) Qualitative results of the adaptive alighnment.
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Improving Geo-Aware Semantic Correspondence

« Supervised framework

~ \
Extract F5(P%) .e,@iofi Ldense
—e \
Drop {O) I A ~t t
“ EfAIEE = L e — i+ ell2
. I Predicted Perturbed
. Point G.T. Position
Contrastive Position
ﬁ ¢ Loss
0 Training
i [ J Soft t
1 ¥ . o
£() = . . u D Drop| | £(.) argmax P;
% Bt (ot s Predicted
1 Extract F'(PY) Point Inference
b Position
Feature Post- Processed Keypoint Feature
Extractor processor Feature Maps Descriptors Pose-variant Space Processed Similarity
Pair Dropout Feature Maps Map

Augmentation

(a) (Left) previous supervised methods [1,2] with a sparse training objective. (Right) an overview of our supervised method

[1] Diffusion Hyperfeatures: Searching Through Time and Space for Semantic Correspondence. NeurlPS, 2023.
[2] A Tale of Two Features: Stable Diffusion Complements DINO for Zero-Shot Semantic Correspondence. NeurlPS, 2023. 38



Semantic Correspondence on AP-10K

« AP-10K, in-the-wild animal pose estimation dataset, 10,015 images, across
23 families and 54 species

« Construct a benchmark: 261k training, 17k validation, 36k testing image pairs

» Testing setting: intra-species, cross-species, cross-family
1L ,!JHU ﬂ;_“_III*I I

wm i= |
Intra Species ’ Cross Species ' Cross Family

(a) Sample image pairs from AP-10K semantic correspondence benchmark.

AP-10K: A Benchmark for Animal Pose Estimation in the Wild. NeurlPS D&B Track, 2021.
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Quantitative Results

(a) Quantitative comparison across different datasets (standard) and PCK levels.

SPair-71k AP-10K-LS. AP-10K-C.S. AP-10K-C.E. PF-Pascal
Method 001 005 0.0 | 001 005 010 | 001 005 0.0 | 001 005 010 | 005 0.0 0.15
U DINOV2+NN [31,51] 63 384 539 | 64 410 609 | 53 370 573 | 44 294 474|630 792 85.1
DIFT [39] 72 397 529 | 62 348 503 | 51 308 460 | 37 224 350 | 660 81.1 872
SD+DINO [51] 79 447 599 | 76 435 629 | 64 397 593 | 52 308 483 | 727 827 916
Ours-Zero-Shot' 89 487 642 | 81 474 667 | 67 427 624 | 54 330 508 | 725 826 915
S SCorrSAN* [14] 36 363 | 553 | - - - - - - - - - [ 815 933 966
CATs++* [5] 43 407 | 598 - - - | 849 938 9638
DHE [26] 7502 leso | 80 458 | 627 | 68 424 600 | 50 327 478 | 780 904 94.1
SD+DINO (S) [51] 96 577 | 746/ 99 570 770 | 88 539 740 | 69 462| 658 | 809 936 969
Ours 216 726 |[829H=281 730 875 | 217 702 858 | 184 631 | 784 855 951 974
Imm.m.da.pn_zmﬁ 217 728 282 732| 877 | 21,7 703 859 | 183 63.2| 785| 853 950 974
Ours (AP-10K P.T.) | 22.0 753 |[385. - - - - - - = = —| 859 957 98.0
(b) Quantitative comparison acrogs (c) Ablation study on the Spair-71k standard and
different datasets (Geo.) and PCK/levels. the geometry-aware sets.
SPair-71k | Ap-10K-LS. SPair-71k (Std.) SPair-71k (Geo.)
Method 001 005 010 ¢of 005 0.10 ,
Model Variants 0.01 0.5 0.10 0.01 0.05 0.10
U DINOvV2+NN [31,51] 34 282 420 /2. 26.8 48.6
DIFT [39] 46 300 425 / 18 189 346 Baseline 96 577 746 715 503 67.6
SD+DINO [51] >3 345 93] §5 280 495 + Dense Training Objective ~ 13.0 652 783 11.1 588 71.9
Ours-Zero-Shot' 63 396 559/ ,/3-2 338 556 + Pose-variant Augmentation 13.8 66.7 80.0 114 60.5 73.9
§  SCorSAN™ [14] 28 300 494 [ - - - + Perturbation & Dropout 151 693 813 135 633 754
CATs++* [5] 3.2 33.1 530 - - -
DHE 6] 68401 25 300 507 Soft Argmax Inference 205 69.6 810 169 619 750
SD+DINO (S) [51] 7.5 503 67. 10 437 693 N Window Soft Argmax (5) 223 72.1 820 198 660 765
Ours 182 66.0 %194 64.8 828 Window Soft Argmax (9) 22.0 727 825 192 663 77.1
—Ours (Adapt. Pose) 183 663 0j5 650 832 Window Soft Argmax (15) 21.6 72.6 829 182 660 77.4
Ours (AP-10K P.T.) 20.1 71.0| 823 [« - -




Qualitative Results

SD+DINO SD+DINO (S) Our
(a) Qualitative comparison with state-of-the-art methods in cases with extreme viewpoint variations.

Source Image SD+DINO SD+DINO (S) Ours

(b) Visualization of similarity map. The query and predicted points are red, and the keypoint supervision of the “chair” category is blue. 41



Qualitative Results on SPair-71k

SD+DINO SD+DINO (8)

42



Qualitative Results on AP-10K Intra-Species

SD+DINO SD+DINO (8)
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* |dentify the problem of geometry-aware semantic correspondence

* Improve geometric awareness of the features in unsupervised and
supervised setting

* Introduce a large-scale and challenging benchmark

» Boosts the performance on multiple benchmark datasets, especially
on geometry-aware subset, achieves 85.6 PCK@0.10 on Spair-71k
(15% gain over SOTA).
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Exploiting Diffusion Prior for
Generalizable Pixel-Level

Semantic Prediction
CVPR 2024

Hsin-YingLee! Hung-YuTseng? Hsin-YingLee® Ming-HsuanYang'#
UCMerced 2?Meta 3Snap “Google Research




Off-the-shelf

Pixel-Level/Dense Semantic Prediction

| @L

Normal

Real-world images Generated images

%

Off-the-shelf

Depth Segmentation Normal

Segmentation

Image properties, e.g., normal, depth, segmentation, are important for image understanding
Existing generative models performs well on real-world images but not on generated images
How to adapt LTM for new task and maintain generalization?

* Address mismatch between deterministic prediction tasks and stochastic T2I model
* Preserve generalizability



Adapt Diffusion Models for Prediction”?

Naive solution: consider dense prediction as an image-to-image (12l) problem using diffusion models
» Diffusion models are inherently stochastic.
Problems - _ o
« Balance between generalizability and learning new tasks should be maintained.

Stochasticity: sampling initial noise and adding additional noise in the generation process
For deterministic prediction tasks, existing methods of 12| translation cannot be applied effectively

Inversion Feature Injection Concatenation

Not applicable due to
extra layers

strong guidance weak guidance with injection

surface normal
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Diffusion Models as Prior (DMP)
* Re-formulating the diffusion process with the blending perspective

Diffusion and generation process are entirely deterministic.

< Diffusion

— @ — - — @

Training with interpolations of inputs and outputs
Diffusion: morphing of output to input images
Generation: demorphing input to output images

Generation

Interpolation . Outputs
x :input  y: output latent Y = Vauy++V1—ax t=|[1,---,T].
x and y are always paired original Y = Vay + AEEER . N(O, I),
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Diffusion Models as Prior

} * Fine-tuning with low-rank adaptation to preserve generalizability
Solution . | -
* Training to predict v-prediction

Training

- v-prediction Lpmp = E(may)at [H (Vorz — V1 — ary) — vo(ys, t)||§]

ol U-Net
VO T — A/ 1— C_l!t'y

Generation

Low Rank

Ada tation — — —

i Yt—1 = \/at—l(\/atyt — V1 - atvg(yt,t))

+v1—ag 1z t=[T,---,1],

Fine-tune a pre-trained T21 model with LORA and inject it for v prediction
Avoid extra noise in the generation process with deterministic sampling



Datasets and Setups

» Generate diverse text descriptions using a MTF model with filter
by Parmar

» Using LDM to synthesize images with text descriptions

* Pseudo ground truth:
 Omnidata v2 for normal

« ZoeDepth for depth,
« EVA2 for semantic segmentation
» PIE-Net for image decomposition (albedo and shading)

» Using experimental setups as Bhattad et al.

52



Evaluation

Training

Bedrooms
(10K)

Test

Bedrooms
(in-domain)

Diverse scenes
(out-of-domain)

Arbitrary images
(out-of-domain)

Off-the-shelf

DMP

Off-the-shelf

Off-the-shelf

DMP

Segmentation

Off-the-shelf

DMP



Arbitrary Images

Inputs

SPADE

DDIB

Off-the-shelf

DMP

o4



Performance Evaluation

* GAN-based: SPADE, DRIT++

* Diffusion-based: SDEdit, DDIB, IP2P (hard: fixed prompts), IP2P (learned: token inversion), VISII

In-domain Out-of-domain

Albedo  Shading Albedo  Shading
SPADE [42] 0.0021 0.0031 0.0030  0.0040
DRIT++ [32] 0.0296  0.0309  0.0392  0.0408
SDEdit [39] 0.0375 0.0501 0.0471 0.0671
DDIB [63] 0.0411 0.0403 0.0443 0.0557
IP2P (hard) [8] 0.0329  0.0479  0.0361 0.0421
IP2P (learned) [8]  0.0215 0.0290  0.0250  0.0309
VISII [41] 0.0145 0.0275 0.0246  0.0285
DMP 0.0041 0.0051 0.0064  0.0070

In-domain Out-of-domain
Normal Depth Normal Depth

L1} Ang| REL| 51 RMSE| L1 Angl REL] ) RMSE|

SPADE [42] 0.0708 0.1635 0.2132 0.4961 0.1379  0.1268 0.2833  0.3587 0.3190  0.2554

DRIT++ [32] 0.0784 0.1723 03792 0.2458 0.2134  0.1350 0.3006 0.4373 0.2585 0.3216

SDEdit [39] 02599 0.5087 0.4656 0.3533 03240 0.2675 0.5293 0.6640 0.2495 0.3382

DDIB [63] 0.1849 0.4210 0.3087 0.5130 0.2367 02271 0.4847 0.6275 0.2788 0.3120

IP2P (hard) [8] 0.3017 0.5468 0.4834 0.3235  0.3358 03168 0.5757 0.6450 0.2252  0.3461

IP2P (learned) [8] 0.3550 0.7181 0.3965 0.3302  0.3494 03397 0.6836 0.5182 0.2664  0.3261

VISII [41] 02081 0.4386 0.3498 0.4405 0.2912 0.2448 0.4895 0.5364 0.2855 0.3181

DMP 0.0514 0.1156 0.1072 0.8861  0.1020 0.0872 0.1886 0.2117 0.6395  0.1360

Normal and depth estimation
bed pillow lamp window painting Mean

Acct mloUt Acct mloUt Acct mloU? Acct mloUt Acct mloUt Acct mloU?t
SPADE [42] 0.8677 0.6370 0.5861 0.3473 0.3659 0.2084 0.6925 0.5627 0.5249 0.3826 0.6074 0.4276
DRIT++ [32] 0.8485 0.4587 0.2427 0.1435 0.1218 0.0776  0.3023 0.2414 0.2579 0.2114 0.3546  0.2265
SDEdit [39] 0.0958 0.0901 0.3824 0.0864 0.1522 0.0651 0.4501 0.2593 0.1333 0.0746 0.2428 0.1151
DDIB [63] 0.3984 03040 02256 0.0637 0.1630 0.0593 0.4741 0.2896 0.1728 0.0881 0.2868 0.1609
IP2P (learned) [8] 0.0714  0.0620 0.0086 0.0042  0.0228 0.0116 03532 0.1699 0.0386 0.0192 0.0989 0.0534
VISII [41] 0.0060 0.0059 0.0261 0.0136 0.0014 0.0011 0.2576 0.1772 0.0013 0.0012 0.0585 0.0398
DMP 0.8947 0.8506 0.5871 0.3645 0.6399 0.4414 0.8338 0.7335 0.7490 0.6735 0.7409 0.6127

Semantic segmentation

Intrinsic image decomposition
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Surface Normal Estimation

Fine-tune U-Net
to predict signals

In-domain Out-of-domain

L1y  Angl{ LI}  Ang|

Predicting x 0.0736 0.1629 0.1319 0.2764
Predictingy  0.0590 0.1291 0.0888 0.1914

v-prediction  0.0514 0.1156 0.0872 0.1886

Inputs Outputs v-prediction

Predicting inputs obtains high-quality images with low generalizability.
Predicting outputs obtains blurred images but generalizes well.
v-prediction has both of their benefits.



Surface Normal Estimation

Generation Steps

0.14;

0.12-

A

0.07-

0.05-

ANY

— Ang
N~
12 5 10 20

steps

5 steps maintains a good balance between the
quality and generalizability.

step=1 5 (Ours)

Single-step model is the denoising U-Net trained to directly
predict outputs from inputs images, which struggles to handle

arbitrary images.
57



Applications

3D Photo Inpainting

Default DMP Default DMP
















Summary

« Adapt diffusion models for dense prediction across domains
and achieve generalizability

» Address stochastic nature in diffusion process
» Reformulate the diffusion process a series of interpolation
* Achieve state-of-the-art results in dense prediction



Skeleton

Skinning Weights Novel View Rendering

Novel Articulation

DreaMo: Articulated 3D Reconstruction From
A Single Casual Video

arxiv 2024
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Learning to Recover Non-Rigid 3D Shape

» Self-Supervised Co-Part Segmentation. W.-C. Hung et al. CVPR 2019

» Self-Supervised Single-View 3D Reconstruction X. Li et al. ECCV 2020

» Online Adaption for Consistent Mesh Reconstruction in the Wild. X. Li et al. NeurlPS 2020

» LASSIE: Learning Articulated Shapes from Sparse Image Ensemble. C.-H. Yao et al. NeurlPS 2022

« HI-LASSIE: High-Quality Articulated Shape and Skelton Discovery from Sparse Image Ensemble. C.-H. Yao. et al. CVPR 2023
« ARTIC3D: Learning Robust Articulated 3D Shapes from Noisy Web Image Collection. C.-H. Yao et al. NeurlPS 2023
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Single iImage
CMR, ECCV 2020

~

No annotation “
No known
camera pose
Without 3D template " ~ observedview ¢ other views »|

ACMR-vid

test-time

trained

Single video

ACMR, NeurlPS 2020

Temporal consistency

After test-time tuning
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LASSIE: Learning Articulated Shape from Sparse
Image Ensemble via 3D Part Discovery

NeurlPS 2022

LS

=

> 3D Parts &

Image
collection Animations

Based on a few (10-30) images in the wild
Using a generic 3D skeleton
Discover 3D parts in a self-supervised manner
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Hi-LASSIE: High-Fidelity Articulated Shape and Skeleton

Discovery from Sparse Image Ensemble
CVPR 2023

Image ensemble

3D articulated shapes
(per-instance)

Automatically estimate class-specific skeleton
Instance-specific optimization for high-quality results
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ARTIC3D: Learning Robust Articulated 3D Shapes from
Noisy Web Image Collections

NeurlPS 2023

oL

Noisy web images 3D articulated shapes and texture Animated Finp-tuped
animation

Handle occlusion
Diffusion-guided optimization
Incorporate 3D diffusion priors in 3D surface optimization
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Diffusion Models for 3D

* Pre-trained T2l diffusion models generate realistic 3D images

Timeline for 3D Diffusion War

SyncDreamer
7 Sep 2023
One-2-3-45 DreamLLM One-2-3-45++
Stable
Dream Score Zero-1-to-3 Magic123 MVDream Dream' Zero123++ Zero123
Fusion Jacobian 20 Mar 2023 30 Jun 2023 31 Aug 2023 Gaussian 23 0ct 2023 13 Dec 2023
20sep2022 Chaining 28 Sep 2023

22 Dec 2022

Arxiv Submitted Date

By Seoyeon Stella Yang
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Existing Methods for 3D Animal Reconstruction

] A. Kanazawa et al. “Learning Category-Specific Mesh Reconstruction from Image Collections.” ECCV 2018

1 S. Goel, et al. “Shape and viewpoints without keypoints.” ECCV 2020
3 D An i m a I Reco nst ru ct i O n ] X. Li, et al. “Self-supervised Single-view 3D Reconstruction via Semantic Consistency.” ECCV 2020

1S. Wu et al. “DOVE: Learning Deformable 3D Objects by Watching Videos.” 1JCV 2023

1 S. Wu et al. “MagicPony: Learning Articulated 3D Animals in the Wild.” CVPR 2023
] C.-H. Yao, et al. “LASSIE: Learning Articulated Shape from Sparse Image Ensemble via 3D Part Discovery.” NeurlPS 2022
1 C.-H. Yao et al. “Hi-LASSIE: High-Fidelity Articulated Shape and Skeleton Discovery from Sparse Image Ensemble.” CVPR 2023
] G. Yang, et al. “Building animatable 3d neural models from many casual videos.” CVPR. 2022.
] R. Liu, et al. “Zero-1-to-3: Zero-shot One Image to 3D Object.” ICCV 2023

* Existing methods learn to reconstruct from large image
collections [1-5]
* Require a large dataset for each category (e.g., 6000 images for bird [1])

6000 images!!

Texture

W,
Ca&ja - \
a4

[1] A. Kanazawa, et al. “Learning Category-Specific Mesh Reconstruction from Image Collections.” ECCV 2018
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Existing Methods for 3D Animal Reconstruction

3D Animal Reconstruction

* Existing methods learn to reconstruct from large image
collections [1-5]

[1] A. Kanazawa et al. “Learning Category-Specific Mesh Reconstruction from Image Collections.” ECCV 2018

[2] S. Goel, et al. “Shape and viewpoints without keypoints.” ECCV 2020

[3] X. Li, et al. “Self-supervised Single-view 3D Reconstruction via Semantic Consistency.” ECCV 2020

[4] S. Wu et al. “DOVE: Learning Deformable 3D Objects by Watching Videos.” 1JCV 2023

[5] S. Wu et al. “MagicPony: Learning Articulated 3D Animals in the Wild.” CVPR 2023

[6] C.-H. Yao, et al. “LASSIE: Learning Articulated Shape from Sparse Image Ensemble via 3D Part Discovery.” NeurlPS 2022

[7] C.-H. Yao et al. “Hi-LASSIE: High-Fidelity Articulated Shape and Skeleton Discovery from Sparse Image Ensemble.” CVPR 2023
[8] G. Yang, et al. “Building animatable 3d neural models from many casual videos.” CVPR. 2022.

[9] R. Liu, et al. “Zero-1-to-3: Zero-shot One Image to 3D Object.” ICCV 2023

* Require a large dataset for each category (e.g., 6000 images for bird [1])

* How to reduce the amount of required data?
* [0-7] target on recontructing animals with sparse image collections
* Less natural result shapes and articulations

4 N

Generic 3D

skeleton Optimized and

re-posed skeleton

Neural part surfaces

4

~30 images

Image ensemble Part and textured outputs

[6] C.-H. Yao, et al. “LASSIE: Learning Articulated Shape from Sparse Image Ensemble via 3D Part Discovery.” NeurlPS 2022
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Existing Methods for 3D Animal Reconstruction

[1] A. Kanazawa et al. “Learning Category-Specific Mesh Reconstruction from Image Collections.” ECCV 2018

[2] S. Goel, et al. “Shape and viewpoints without keypoints.” ECCV 2020
3 D An i m a I Reco nst ru Ct i 0 n [3] X. Li, et al. “Self-supervised Single-view 3D Reconstruction via Semantic Consistency.” ECCV 2020

[4] S. Wu et al. “DOVE: Learning Deformable 3D Objects by Watching Videos.” 1JCV 2023

[5] S. Wu et al. “MagicPony: Learning Articulated 3D Animals in the Wild.” CVPR 2023
[6] C.-H. Yao, et al. “LASSIE: Learning Articulated Shape from Sparse Image Ensemble via 3D Part Discovery.” NeurlPS 2022
[7] C.-H. Yao et al. “Hi-LASSIE: High-Fidelity Articulated Shape and Skeleton Discovery from Sparse Image Ensemble.” CVPR 2023
[8] G. Yang, et al. “Building animatable 3d neural models from many casual videos.” CVPR. 2022.
[9] R. Liu, et al. “Zero-1-to-3: Zero-shot One Image to 3D Object.” ICCV 2023

* Existing methods learn to reconstruct from large image
collections [1-5]

* Require a large dataset for each category (e.g., 6000 images for bird [1])

* How to reduce the amount of required data?

* [0-7] target on recontructing animals with sparse image collections
* Less natural shapes and articulations

* |Learn from vicdeos

* Videos offer more temporal information than still images, aiding the
model in learning articulation through continuous movements

* BANMO [8] shows promising reconstruction results from ~10 casually
captured videos

* Require videos with dense camera viewpoint coverage

[8] G. Yang, et al. “Building animatable 3d neural models from many casual videos.” CVPR. 2022.
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Existing Methods for 3D Animal Reconstruction

[1] A. Kanazawa et al. “Learning Category-Specific Mesh Reconstruction from Image Collections.” ECCV 2018

[2] S. Goel, et al. “Shape and viewpoints without keypoints.” ECCV 2020
3 D An i m a I Reco nst ru Ct i O n [3] X. Li, et al. “Self-supervised Single-view 3D Reconstruction via Semantic Consistency.” ECCV 2020

[4] S. Wu et al. “DOVE: Learning Deformable 3D Objects by Watching Videos.” 1JCV 2023

[5] S. Wu et al. “MagicPony: Learning Articulated 3D Animals in the Wild.” CVPR 2023
[6] C.-H. Yao, et al. “LASSIE: Learning Articulated Shape from Sparse Image Ensemble via 3D Part Discovery.” NeurlPS 2022
[7] C.-H. Yao et al. “Hi-LASSIE: High-Fidelity Articulated Shape and Skeleton Discovery from Sparse Image Ensemble.” CVPR 2023
[8] G. Yang, et al. “Building animatable 3d neural models from many casual videos.” CVPR. 2022.
[9] R. Liu, et al. “Zero-1-to-3: Zero-shot One Image to 3D Object.” ICCV 2023

* Existing methods learn to reconstruct from large image
collections [1-5]

* Require a large dataset for each category (e.g., 6000 images for bird [1])

* How to reduce the amount of required data?
* [0-7] target on recontructing animals with sparse image collections
* Less natural result shapes and articulations

* |Learn from vicdeos

* Videos offer more temporal information than still images, aiding the
model in learning articulation through continuous movements

* BANMO [8] shows promising reconstruction results from ~10 casually
captured videos

* Require videos with dense camera viewpoint coverage

* Could we directly reconstruct animals from single videos?

[8] G. Yang, et al. “Building animatable 3d neural models from many casual videos.” CVPR. 2022.
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Existing Methods for 3D Animal Reconstruction

[1] A. Kanazawa et al. “Learning Category-Specific Mesh Reconstruction from Image Collections.” ECCV 2018
[2] S. Goel, et al. “Shape and viewpoints without keypoints.” ECCV 2020

[3] X. Li, et al. “Self-supervised Single-view 3D Reconstruction via Semantic Consistency.” ECCV 2020

[4] S. Wu et al. “DOVE: Learning Deformable 3D Objects by Watching Videos.” 1JCV 2023

[5] S. Wu et al. “MagicPony: Learning Articulated 3D Animals in the Wild.” CVPR 2023
(6]
(7]
(8]
(]

3D Animal Reconstruction

C.-H. Yao, et al. “LASSIE: Learning Articulated Shape from Sparse Image Ensemble via 3D Part Discovery.” NeurlPS 2022

* Existing methods learn to reconstruct from large image
collections [1-5]

* Require a large dataset for each category (e.g., 6000 images for bird [1])

C.-H. Yao et al. “Hi-LASSIE: High-Fidelity Articulated Shape and Skeleton Discovery from Sparse Image Ensemble.” CVPR 2023
G. Yang, et al. “Building animatable 3d neural models from many casual videos.” CVPR. 2022.
R. Liu, et al. “Zero-1-to-3: Zero-shot One Image to 3D Object.” ICCV 2023

* How to reduce the amount of required data?
* [0-7] target on recontructing animals with sparse image collections
* Less natural result shapes and articulations

* |Learn from vicdeos

* Videos offer more temporal information than still images, aiding the
model in learning articulation through continuous movements

e [8] shows promising reconstruction results from ~10 casually captured
videos

* Require videos with dense camera viewpoint coverage

* Could we directly reconstruct animals from single videos?

* Hallucinating low-coverage regions using a view-conditioned diffussion
model— Zero-1-to-3 [Y]

[8] G. Yang, et al. “Building animatable 3d neural models from many casual videos.” CVPR. 2022.
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Existing Methods for 3D Animal Reconstruction

Zero-1-to-3
* Diffusion model for control of camera viewpoint in novel view synthesis
* 3D reconstruction of a static object from a single image by imagining different views

* Difficult to apply to moving and deformable objects such as animals

Input View (RGB)

* Zero-1-to-3 & VgSJC

(R T)] E V& Zero-lto-3% « * [h. (R;, Ty)]
o e ®ry Luse

. E V&g Zero-l-to- 3% - %- i .‘ ' h h
; s R .

» Zero-1-to-3 » =

Rendering View

o Latent Diffusion Model ' 7
Gaussian Noise Output View (RGB)* Neural Field & °

Novel View Synthesis 3D Reconstruction

[9] R. Liu, et al. “Zero-1-to-3: Zero-shot One Image to 3D Object.” ICCV 2023
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Articulated 3D Reconstruction From A Single Video

Problem Formulation

* Goal: reconstructing an articulated 3D model from an Internet video

* Input: an Internet video capturing a deformable object

* QOutput: an articulated 30D model with skeleton, skinning weight, 3D shape, and color
* No pre-defined shape template from 3D scans

(Inadequate View Coverage) Skeleton Skinning Weights ~ Shape & Color
A Single Casual Training Video

DreaMo
—_—

(No template)

73



Articulated 3D Reconstruction From A Single Video

Problem Formulation

* Goal: reconstructing an articulated 3D model from an Internet video

* Input: an Internet video capturing a deformable object

* Qutput: an articulated 3D model with skeleton, skinning weight, 3D shape, and color

* No pre-defined shape template from 3D scans

Why Is It Important?

* Reconstructing arbitrary animals in 3D from the Internet can provide diverse 3D assets for
various applications such as movie production, gaming, and virtual reality

(Inadequate View Coverage) Skeleton Skinning Weights ~ Shape & Color
A Single Casual Training Video

DreaMo
—_—

(No template)
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Articulated 3D Reconstruction From A Single Video

Problem Formulation

* Goal: reconstructing an articulated 3D model from an Internet video

* Input: an Internet video capturing a deformable object

* Qutput: an articulated 3D model with skeleton, skinning weight, 3D shape, and color
* No pre-defined shape template from 3D scans

Why Is It Important?

* Reconstructing arbitrary animals in 3D from the Internet can provide diverse 3D assets for various applications such as movie production,
gaming, and virtual reality

Why Is It Challenging?
* Internet videos often lack sufficient view coverage for 3D reconstruction

Reconstructing plausible 3D shapes without shape templates in such a demanding setting is

difficult |
(Inadequate View Coverage) Skeleton Skinning Weights ~ Shape & Color

A Single Casual Training Video
'y ==l A = 4 DreaMo
: - (No template)




DreaMo Overview

[1] B. Mildenhall, et al. Nerf: Representing scenes as neural radiance fields for view synthesis. ECCV. 2020.

[2] G. Yang, et al. Building animatable 3d neural models from many casual videos. CVPR. 2022.
[3] A. Jacobson, et al. Skinning: Real-time shape deformation. SIGGRAPH Courses. 2014.

Implicit 3D Model (Canonical Space)
* Represent a 3D reconstruction target in a resting pose

* Implicitly model the 3D shape and color by the neural radiance field [1] Neural Implicit Model

O% | density
color

Warping Model

* Mapping between observation
space and canonical space ‘A

* Object deformation
* Neural bones represent articulation [”]

o~ >(Backward Warp)— 2 ,'I

* Linear blend skinning [3] N /
. @.? \\ Ve
* Camera transformation Vi { Forward arp. J4
* (Global transformation model Observation Space W Canonical Space V
(Time-dependent) (Time-invariant)
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How to Address The Low-Coverage Regions?

[4]1R. Liu, et al. "Zero-1-to-3: 597 Zero-shot one image to 3d object." ICCV. 2023.
[5] B. Poole, et al. "Dreamfusion: Text-to-3d using 2d diffusion.” ICLR. 2023.

Training-view Reconstruction Diffusion-guided Hallucination

* Insufficient for reconstructing plausible . Le\(/jerage zero—lt—to—Stﬁon_ditioned| on source video frame
shapes in low-coverage regions and came pose to synthesize novel view

* Distill synthetic supervisions into the 3D reconstruction
model using Score Distillation Sampling (SDS)

Hallucinate unseen views for each object pose

Volume
Rendering

Zero-1-to-3

o » (’
€% ﬁﬁl .

Unseen Views
For Each Object Pose

\ 4

Fixed

7’



How to Avold Irregular Reconstructed Shapes?

Minimize the warping error to encourage the inverse
relationship between forward and backward
warpings for unseen views

Regularization

* Novel-view cycle consistency Loeye = Z T, Wy, — F(G(wy, £), )]l
n

* Smooth articulation
Unseen View

* Surface constraint ;
Backward Warp G

\
-/i\Forward Warp £

ncyc

Sample a point along the ray
from a novel view

Observation Space w Canonical Space v
(Time-dependent) (Time-invariant)
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How to Avold Irregular Reconstructed Shapes?

Regularize variations in rotations R and
translations s between consecutive time steps

Regularization

. . B, T—-1
* Novel-view cycle consistency r ang(R}, R, + ||sf, — s5™,
. _ smooth Lmooth = z B(T — 1)

* Smooth articulation 577770 b=Ti=1

* Surface constraint
Learned transitions of bones in
the low-coverage or self-
occluded regions often exhibit
unnatural jiggles
Introduce smooth transition for Observation Space W Canonical Space v

(Time-dependent) (Time-invariant)

smooth bone motion
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How to Avold Irregular Reconstructed Shapes?

Regularization r
_ _ Encourage the neural bones to surf

* Novel-view cycle consistency stay within the learned surface //’ R
* Smooth articulation Lo = || max {8, 0} ||, t i“\

@

* Surface constraint

Neural bones may scatter all over the
space

Add constraints to keep

neural bones beneath learned surface Observation Space W LSRN

(Time-dependent) (Time-invariant)
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Interpretable Skeleton Generation

Skeleton Extraction From The Implicit Model

* Extract rest-pose mesh from the implicit 3D model using marching cube

* Assign each vertex (skin point) to the neural bone of the highest skinning weight
* Establish an edge between bones if there is a sufficient skin point connection

Skinning Weights
Rest-pose Mesh Neural Bones

l B bones

!

.

Vertex Connection Generate Skeleton
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Experimental Results

Self-collected Dataset

* 42 animal video clips from the Internet

» 28 different species

* Average azimuth viewpoint coverage: 31%

* Average video duration: 15.7 seconds

Some image crops of the target subjects from the dataset.

82



BANMOo [7]

DreaMo (ours)

Experimental Results

Novel View Rendering (RGB & Depth)

[2] G. Yang, et al. Building animatable 3d neural models from many casual videos. CVPR. 2022.
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BANMo [7]

DreaMo (ours)

Experimental Results

3D Reconstructed Shape

[2] G. Yang, et al. Building animatable 3d neural models from many casual videos. CVPR. 2022.
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Experimental Results

Hi-LASSIE ARTIC3D BANMo
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Experimental Results

Skeleton Generation & 3D Model Manipulation
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summary

Articulated 3D reconstruction through jointly training-view reconstruction, unseen view hallucination,
and tailored regularizations from a single casual video with inadequate view coverage

Advantages

* Require only one easily accessible casual video from the Internet
* Template-free, eliminating the need for 3D scans

Main Technical Contributions

 Diffusion-guided hallucination

* Tailored regularizations to prevent irregular 3D shape

* Simple strategy for interpretable skeleton generation

(Inadequate View Coverage) Skeleton Skinning Weights  Shape & Color
A Single Casual Training Video
DreaMo
L ‘ (No template)

3
RN
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Google VideoPoet

An astronaut
starts dancing
on Mars. Colorful
fireworks then
explode in the
background

text _~M txt to video
image img tovideo
@ /-.
= Q a. ®» -
I g =
depth VideoPoet stylization - 5
T e
optical e <
flow .. N
& B Y :
outpainting ¥
masked \ .
video TR
video to audio —'\f\/\I‘I\WMIV'/V\% %

Text-to-video
Image-to-video
Video editing
Stylization
Inpainting
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Google VideoPrism

<2 ish>

Classification
& Localization

J
v Avideo of a person forward rolling.

| |
x A video of a person handstanding.

| |
x A video of a person stretching.

VideoPrism
EIIEE A little girl is playing with

blocks.

@Y What is the color of the block the

toddler puts after the green one?

N Purple.

Captioning
& QA

<moving>

CV for

Science <being carried>

<carrying=
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