

Towards Practical and Secure Earable Computing Using Multi-modal Inference

Tianxing Li Department of Computer Science and Engineering Michigan State University

June 3rd, 2024

MICHIGAN STATE UNIVERSITY

Source: Palaris Market Research Analysis

The Rise of Earbuds Computing

Wear earbuds in gym

MICHIGAN STATE UNIVERSITY

4

Handsfree Voice Controllable System

5

Security Threats of Voice Controllable Systems

MICHIGAN STATE UNIVERSITY

Background: Non-linearity Effect of Microphone

[1] Zhang, G., Yan, C., Ji, X., Zhang, T., Zhang, T., & Xu, W. (2017, October). Dolphinattack: Inaudible voice commands. In Proceedings of the 2017 ACM SIGSAC conference on computer and communications security (pp. 103-117).

Are These Earbuds as Secure as Our Smartphones?

- LiVoAuth[1]
- CaField[2]
- VoiceGesture[3]

[1] Zhang, Rui, et al. "LiVoAuth: Liveness Detection in Voiceprint Authentication with Random Challenges and Detection Modes." IEEE Transactions on Industrial Informatics (2022).

[2] Yan, Chen, et al. "The catcher in the field: A fieldprint based spoofing detection for text-independent speaker verification." Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security. 2019.

[3] Zhang, Linghan, Sheng Tan, and Jie Yang, "Hearing your voice is not enough: An articulatory gesture based liveness detection for voice authentication." Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. 2017.

Challenges: Hardware Limitation.

- Limited Computing Resources
 - H2 chip (Airpods 3) vs. A16 (iPhone 15)
- Limited Energy Budget
 - 369 mAh (Airpods 3) vs. 3367mAh (iPhone 15)

- Limited calculation resources
- Tradeoff between quick response and security

Pixel buds, AirPods, Bose

Outline

Practical Inaudible Attacks (MobiSys'23)

Multi-Modal Authentication Framework (MobiSys'21, Ubicomp'23, MobiSys'24, NDSS'25)

Can we attack earbuds practically?

Challenge #1: Low Signal-to-noise Ratio (SNR)

Challenge #1: Low SNR

Key Idea: Attack Through Indirect Path

Challenge #2: Unnoticeable Feedback

Key Idea: Utilize Bluetooth Side Channel

EchoAttack Overview

System Design

Path Searching

Bluetooth Feedback

Threat Model

Path Searching

Select the path that keeps the most energy

$$Max(I_{received} = \frac{\cos\theta}{L^2} \cdot I_s)$$

Launching Ultrasound Attacks

System Design

Path Searching

Bluetooth Feedback

How to get energy change in Bluetooth Channel?

1 master+16 workers Received signal strength(RSS)

How to eliminate noise of Wi-Fi and Zigbee?

Bluetooth: Adaptive frequency hopping

EchoAttack Implementation

EchoAttack Implementation

EchoAttack Evaluation

Baseline: Using only direct path (Direct Attack)

EchoAttack Evaluation: Three Real-world Scenarios

Public study area

Bus stop

Gym

EchoAttack Evaluation: Overall Performance

EchoAttack: 85%

Direct Attack: 15%

EchoAttack Evaluation: Bluetooth Feedback Module

Takeaways

- We reveal the ultrasound attack threats to the voice assistants on earbuds.
- We design EchoAttack to conduct ultrasound attack over earbuds.
- EchoAttack achieves a high attack success rate of about 85% on average.

Outline

Practical Inaudible Attacks (MobiSys'23)

Multi-Modal Authentication Framework (MobiSys'21, Ubicomp'23, MobiSys'24, NDSS'25)

Audio Deepfake Attacks

Access The Victim Devices

Threat Model

- Synthesis Attack.
- Replay Attack.
- Audio Deepfake Attack.
- Hybrid Attack.

MICHIGAN STATE UNIVERSITY

Existing Multi-modal Earable Authentication

[1] Z. Wang, S. Tan, L. Zhang, Y. Ren, Z. Wang, and J. Yang, "Eardynamic: An ear canal deformation based continuous user authentication using in-ear wearables," Proceedings of Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 5, no. 1, 2021.

[2] J. Liu, W. Song, L. Shen, J. Han, and K. Ren, "Secure user verification and continuous authentication via earphone imu," IEEE Transactions on Mobile Computing, vol. 22, no. 11, pp. 6755–6769, 2023.

[3] S. Choi, J. Yim, Y. Jin, Y. Gao, J. Li, and Z. Jin, "Earppg: Securing your identity with your ears," in Proceedings of ACM IUI, 2023.

Is there an <u>accurate</u>, <u>practical</u>, and <u>lightweight</u> anti-attack authentication for earbuds?

Our Solution: Audio + Piezo

Piezoelectric sensor

Challenge #1: Low Signal-to-noise Ratio (SNR)

• Sensor size ≈ sensor performance

Our Solution: Multi-layer Piezo Sensing Structure

Challenge #2: How to fuse two sensing modalities for authentication?

- Heterogeneous sensor data
- Computation overhead

Our Solution: FusionSecNet

Our Solution: FusionSecNet

FlowAuth Authentication

PiezoBuds Implementation

PiezoBuds Implementation

Experimental Settings

- 85 participants (64 M, 21 F, 45 native speakers)
- Reading materials
 - 3 types (content is random): a speech script, a fairy tale, and scientificeducational content
 - 1000 word per text
- Evaluation Metrics
 - Equal Error Rate (EER)

Authentication Performance

Anti-attack Performance

	Defense Success Rate				
Scenario 1		Replay only	100%		
	Mimic	ResembleAI [1]			
		PlayHT [2]	100%		
		Vall-E [3]			
Scenario 2:					
Scenario 3: Re	100%				
Scenario 4: R					

[1] Resemble, "Resemble.ai," https://www.resemble.ai/, Retrieved by Apr 17 2024.

[2] play.hy, "Playht," https://play.ht/, Retrieved by Apr 17 2024

[3] C. Wang, S. Chen, Y. Wu, Z. Zhang, L. Zhou, S. Liu, Z. Chen, Y. Liu, H. Wang, J. Li, L. He, S. Zhao, and F. Wei, "Neural codec language models are zero-shot text to speech synthesizers," 2023. 58

Comparison With The State-of-the-art Methods

	Modalit(ies)	Devices	# subjects	ACC (%) / EER (%)	Enrollment length (s)	Latency (s)	Defense Task	FAR (%)
[54]	Piezo + Audio	Headset	-	97 / -	N.A.	0.8 - 1.2	Live Check	2
[37]	Piezo + Audio	Wearable	29	87.5 – 96.1 / -	107	2.17 - 4.53	Authentication	3.1 – 3.6
[14]	Piezo + Audio	Wearable	18	95 / -	N.A.	0.3 - 0.83	Live Check	0
[16]	In/out ear sound	Earable	23	- / < 4	75	0.389 - 0.484	Verification	0
[17]	Ear canal	Earable	20	95.16 / -	120	-	Verification	0.18 - 0.22
[62]	Ear canal	Earable	24	97.38 / -	-	-	Authentication	5.3
[35]	IMU	Earable	34	- / 1.28	-	2	Verification	0
[5]	PPG + Audio	Earable	25	94.84 / -	-	-	Authentication	-
PiezoBuds	Piezo + Audio	Earable	85	99.21 / 1.05	15	0.04 - 0.219	Authentication	0

Takeaway

Practical Inaudible Attacks (MobiSys'23)

Multi-Modal Authentication Framework (MobiSys'21, Ubicomp'23, MobiSys'24, NDSS'25)

Collaborators and Research Teams

