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Multiscale and multimodal data fusion
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Precision Medicine in Psychiatric Diagnoses: 

The Research Domain Criteria (RDoC)
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NSF Dev-Cog project: 
Quantifying Brain Dynamics and Related 

Genetic Factors in Childhood

http://devcog.mrn.org/

To map the developmental trajectory of functional and structural brain 
networks in healthy children and adolescents, understand the genetic 
factors that promote this process, and to develop new data analysis 
methods

Principal Investigators:

Julia Stephen: The Mind Research Network

Tony Wilson: Boys Town National Hospital

Yu-Ping Wang: Tulane University

Vince D. Calhoun: GSU/Gatech/Emory

http://devcog.mrn.org/


Developmental Chronnecto-Genomics 

(Dev-CoG) study

• Children between the ages of 9 and 15

• No psychiatric/neurological conditions

• Medically healthy



Computational neuroimaging genomics 
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• Multi-scale and modal data 

 sMRI, rsfMRI, tfMRI, SNPs, methylation, ….

• Multiple types of data 

 continuous, discrete, binary, …

• Model development

– Linear (e.g., ICA, CCA, sparse regression ) vs non-linear 

(e.g., kernel CCA, distance  correlation, deep networks)

– Two way correlation (e.g., CCA) vs multi-way correlation 

(e.g., mCCA, tensor decomposition) 

– two view fusion (e.g., gICA) vs multi-view fusion (e.g., multi-

task learning, NMF, graphical models) 

Challenges for large brain imaging and 

genomics data fusion



Canonical correlation analysis  (CCA) 

(Hotelling, H. (1936))

CCA can detect the correlation between multiple datasets

 but cannot link with phenotypes!



Deep CCA 
(Andrew et al. @ICML13’, Wang et al. @ICML15')



Co-regularized learning: 
regression + correlation

Y

Phenotypical traits

Pascal Zille, Vince D. Calhoun, Yu-Ping 

Wang, Enforcing Co-expression Within a 

Brain-Imaging Genomics Regression 

Framework, 

IEEE Trans. Medical Imaging, 

37(12), 2018

http://ieeexplore.ieee.org/document/7961271/
http://ieeexplore.ieee.org/document/7961271/
http://ieeexplore.ieee.org/document/7961271/


Collaborative regression (CR) 
(SM. Cross & R. Tibshirani, 2014)



Deep collaborative learning (DCL)

-- A deep learning version of CR



Formulation of Deep collaborative learning (DCL)

Objective function 



Deep collaborative learning (Gradient)

Mini-batch stochastic gradient descent (mini-batch SGD) is used to train  

DCL’s network; and back-propagation (BP) is used to pass the gradient  

from one layer to another layer.

To apply mini-batch SGD and BP, the gradient of DCL’s objective function  is

needed.

DCL’s Gradient
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• Regarding brain regions as vertices, we use a graph to represent functional 

connectivity (FC) network based on fMRI time series data

• For each subject, we use the similarity matrix to define the functional 

connectivity (FC), which can be regarded as unique brain fingerprints

Application to brain functional connectivity 

network analysis



Brain connectivity networks as fingerprints

• Functional connectivity 

profiles act as a fingerprint 

that can accurately identify 

subjects from a large 

group

• It can be used to predict 

cognitive behaviors

Finn et al., Functional connectome fingerprinting: identifying 

individuals using patterns of brain connectivity, Nature Neuroscience, 

2015.
                         



Real data analysis - Data

Philadelphia Neurodevelopmental Cohort(PNC)

Resting state  

fMRI; 124 time  

points

Subjects: 989 adolescents (age 8-22)

rest fMRI nback fMRI
Memory task  

fMRI; 231 time  

points

emoid fMRI

Emotion task  

fMRI; 210 time  

points

Preprocessed (motion correction, spatial normalization, spatial  

smoothing) usingSPM

Run deep collaborative learning on each combination: rest-nback;  

rest-emoid; nback-emoid.



Data augmentation

Training deep network requires a large samplesize.

Data augmentation is a popular technique in image processing fields, which  

conducts reasonable transformation (such as image rotation, reflection,  

scaling) on raw images.

Brain connectivity reflects the correlation between different voxels/ROIs  

across a series of time points.

We generated more samples by re-sampling in the temporal space (with time  

window length > 60 secs) (Leonardi2015);

Training set and testing set were separated before augmentation.



Classifying age groups

• Methods for comparison: 

CCA, kernel CCA, Deep CCA, Logistic regression,  

Collaborative regression (CR), Deep collaborative learning (DCL)

• Age groups: Preteens (8-11 years) and young adults (18-22 years)



Classifying groups of  different Intelligent Quotient (IQ) : 

Wide Range Achievement Test (WRAT)

IQ/WRAT groups: low WRAT group (score 55-89) and high WRAT  group 

(score114-145). 

Compared to deep CCA, deep collaborative learning yields much higher  

classification accuracies.

Brain connectivities perform better in classifying age groups than in  

classifying cognition abilities.



Visualization of different data representations

(a) CCA (b) Kernel CCA (c) Deep CCA

(d) Logistic regression (e) Collab regression (f) Deep CL

W. Hu, V. Calhoun, & Y. P. Wang, IEEE  TBME, 2019



Since deep network is a black box, it is not able to provide p-values for 

further ROI analysis. 

To investigate the discriminative power of each brain intrinsic network in 

classifying age groups or cognition groups, we occlude each brain sub-

network individually and test if the classification accuracy drops.

Brain sub-networks

sensorimotor network (SM), visual network (VIS), default mode network (DMN),  

cerebellum (CB), auditory network (AUD), memory retrieval network (MEM),  

cingulo-opercular task control (CNG), salience network (SAL), subcortical  network 

(SCT), ventral attention (VTRL), dorsal attention (DSL)
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Interpretation of identified brain subnetwork
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Identification of brain subnetwork 

using occlusion sensitivity (OS) analysis



Further information

Wenxing Hu, Biao Cai, Aiying Zhang, Vince D. Calhoun, Yu-Ping Wang, Deep 

collaborative learning with application to multimodal brain development study, 

IEEE Transactions on Biomedical Engineering, Date of Publication: 13 March 

2019; DOI: 10.1109/TBME.2019.2904301

Wenxing Hu, PhD

https://ieeexplore.ieee.org/document/8666981
https://ieeexplore.ieee.org/document/8666981


Grad-CAM guided convolutional collaborative learning

(gCAM-CCL)

• The obtained activation maps quantify pixel-level contributions of the input features.

• This is achieved by combining intermediate feature maps using gradient-based weights.

• Class-specific activation maps (CAM) further facilitate biological mechanism analysis.

Wenxing Hu (Tulane U)
25 /  67



How to fuse two networks: collaborative layer
The collaborative learning layer1 in our deep collaborative learning (DCL) model considers 

both cross-data associations and their fittings to the class labels.
In our earlier work1 on DCL, the loss function was dependent on the batch size, leading to a

problem for model training.

In this model, we use a batch-size-independent lossfunction.

Loss function

Two classes scenario

i i
where h(1), h(2)are the outputs of two ConvNets, and y represents classlabel.

Multiple classes scenario

where m represents the number of views, C represents the number of classes,  

and yc represents the class label for class c.

1. Hu, Wenxing, et al. ”Deep collaborative learning with application to the study of multimodal  

brain development.” IEEE TBME (2019).

Wenxing Hu (Tulane U) Nov 10th, 2020
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How to interpret CNN: An example of CNN

https://poloclub.github.io/cnn-explainer

Wenxing Hu (Tulane U) Nov 10th, 2020
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How to interpret CNN: CNN is complicated

https://poloclub.github.io/cnn-explainer

Wenxing Hu (Tulane U)



How to interpret CNN: feature maps

Wenxing Hu (Tulane U) Nov 10th, 2020
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How to combine feature maps

In order to combine feature maps, a set of weights are  
needed.

Some methods, i.e., CAM (class activation maps), calculates  
the weights by retraining the deep network: add an additional 
classification layer after the feature-map-layer.

1. Not end-to-end;
2. Needs extra training (time consuming);
3.  classification accuracy drops due to the break of original  
architecture.

Wenxing Hu (Tulane U) Nov 10th, 2020
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How to interpret CNN: Grad-CAM and Guided Back-Propagation (BP)

Grad-CAM: class-specific; interpreting high-level feature maps

kThe formulations of how Grad-CAM calculates weights gc and activation maps

mapgradcam are as follows.

where yc represents the prediction score for class c, Fk represents the kth feature map,  
and

Guided BP: high resolution; interpreting raw image inputs

31 /  67



How to interpret CNN: Score-CAM

Score-CAM: feature map weights from channel-wise increase of confidence (CIC)

k

Guided BP: high resolution; interpreting raw image inputs

32 /  67

Increase of confidence (CIC) of the k-th channel of feature map 𝐹𝑘

𝐶𝐼𝐶 𝐹𝑘 = CNN 𝑋 ∘ 𝐻𝑘 − CNN(𝑋)

where 𝐻𝑘 is generated from 𝐹𝑘 by upsampling and normalization to [0, 1]. It’s used 
as a mask on the original input.

CICs are then used as weights to combine feature maps
map𝑆𝑐𝑜𝑟𝑒−𝐶𝐴𝑀 = 𝑅𝑒𝐿𝑈(

𝑘

𝐶𝐼𝐶 𝐹𝑘 ⋅ 𝐹𝑘)

H. Wang, et al., Score-CAM: 
Score-Weighted Visual 
Explanations for 
Convolutional Neural 
Networks, 2020 IEEE 
CVPRW



How to interpret CNN: Score-CAM

Score-CAM advantages over Grad-CAM

33 /  67

• Get rid of noisy and unstable gradients
• Gradients in CNN can be noisy due to 

saturation in sigmoid or the flat zero-gradient 
region in ReLU

• Weights from gradients can be unstable and 
cause false confidence

• Better visualization results on multiple 
objects of the same class

• More narrow-focused and smoother 
saliency maps



Schizophrenia-related biomarker identification

Guided BP: high resolution; interpreting raw image inputs

34 /  67

Schizophrenia-related biomarker identification

Averaged saliency map on FC from fMRI:
• Most highlighted functional connectivities lie in the 

auditory (pink box), default mode (red box) and visual 
(blue box) networks

• The top brain functional networks identified align with 
prior studies of Schizophrenia

Averaged saliency map on sMRI:
• Both voxel-level and region-level saliency 

maps are generated.

• Group the voxels in anatomical brain 
regions defined by AAL[1] atlas

• Top 3 highlighted brain regions are 
cingulum, thalamus, and caudate, which 
also align with prior studies 

[1] Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject 

brain, Neuroimage, vol. 15, no. 1, pp. 273–289, 2002



Our Model: Grad-CAM guided convolutional collaborative learning

(gCAM-CCL)

Grad-CAM: class-specific activation maps  

Guided BP: high resolution activation maps

Wenxing Hu (Tulane U) Nov 10th, 2020
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Application to a brain cognition study - PNC cohort

Philadelphia Neurodevelopmental Cohort (PNC)

Subjects: 854 adolescents (aged 8-21 years)

SNPs

Brain tissue specific (based on GTEx1)

nback fMRI

Memory task fMRI; 264*264 functional  
connectivity matrix

1. Genotype-Tissue Expression (GTEx)  https://www.gtexportol.org/home/

Wenxing Hu (Tulane U) Nov 10th, 2020
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Application to a brain cognition study - PNC cohort

Philadelphia Neurodevelopmental Cohort (PNC)

Subjects: 854 adolescents (aged 8-21 years)

The wide range achievement test (WRAT) score, a measure of comprehensive  
cognitive ability, including reading, comprehension, math skills, etc., was used to  
evaluate the cognitive ability of each subject.

Two classes: low WRAT group (the bottom 20% group WRAT 55-89) versus high  
WRAT group (the top 20% group WRAT 114-145).

training set (70%), validation set (15%), and test set (15%).



WRAT classification results

Table: The comparison of classification performances (Low/High WRAT classification).

The brain FC activation maps for low and  High WRAT group. 
 Grad-CAM (top 4 subfigures) and Gradient-Guided Grad-CAM (bottom 4 subfigures).

High WRAT groupLow WRAT group

CCL: Convolutional Collaborative Learning; SVM: Support Vector Machine; DT: Decision Tree; RF: random Forest



Identified Brain functional connectivities (FCs)

The length of a circle arc indicates the number of FC connections on a brain region.

Three hub (lingual, middle and inferior occipital): visual processing, object recognition,  and 

word processing.

Wenxing Hu (Tulane U) Nov 10th, 2020
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Identified genes



Gene enrichment analysis

Wenxing Hu (Tulane U) Nov 10th, 2020
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More information

Wenxing Hu, Xianghe Meng, Yuntong Bai, Aiying Zhang, Gang Qu, Biao Cai, Gemeng Zhang, 

Tony W. Wilson, Julia M. Stephen, Vince D. Calhoun, Yu-Ping Wang, Interpretable multimodal 

fusion networks reveal mechanisms of brain cognition, IEEE Transactions on Medical Imaging, 

Page(s):1-1, Date of Publication: February 08 2021; DOI: 10.1109/TMI.2021.3057635

Ziyu Zhou, Anton Orlichenko, Gang Qu, Zening Fu, Vince D Calhoun, Zhengming Ding and Yu-Ping 

Wang, An Interpretable Cross-Attentive Multi-modal MRI Fusion Framework for Schizophrenia 

Diagnosis, in preparation, 2023. 

Wenxing Hu, PhD Ziyu Zhou, PhD student

https://ieeexplore.ieee.org/document/9349455
https://ieeexplore.ieee.org/document/9349455


Summary 

• Integration of multiscale and multi-modal medical data brings 

significant challenges for data sciences 

• Multi-view deep learning offers a powerful way for heterogeneous 

data fusion while uncover their complex relationships

• The interpretability of multi-view deep learning is challenging but 

important towards biological discovery
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Visit us at 

http://www.tulane.edu/~wyp

Email:  wyp@tulane.edu

Finding needle in the haystack! 
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