

New representer theorems for inverse problems and machine learning

Michael Unser Biomedical Imaging Group EPFL, Lausanne, Switzerland

Linear forward model

EPFL CIS - RIKEN AIP Seminar Series (virtual), March 2, 2022

Variational formulation of inverse problems in imaging

Problem: recover s from noisy measurements y

Regularization of ill-posed inverse problem

 $\mathbf{s_{rec}} = \arg\min_{\mathbf{s} \in \mathbb{R}^N} \underbrace{\|\mathbf{y} - \mathbf{Hs}\|_2^2}_{\text{data consistency}} + \underbrace{\lambda \|\mathbf{Ls}\|_p^p}_{\text{regularization}}, \quad p = 1, 2$

Supervised learning as a (linear) inverse problem but an infinite-dimensional one ...

Given the data points $(x_m, y_m) \in \mathbb{R}^{N+1}$, find $f : \mathbb{R}^N \to \mathbb{R}$ s.t. $f(x_m) \approx y_m$ for $m = 1, \dots, M$

Introduce smoothness or regularization constraint $R(f) = \|f\|_{\mathcal{H}}^2 = \|Lf\|_{L_2}^2 = \int_{\mathbb{R}^N} |Lf(x)|^2 dx: \text{ regularization functional}$ $\min_{f \in \mathcal{H}} R(f) \quad \text{subject to} \quad \sum_{m=1}^M |y_m - f(x_m)|^2 \le \sigma^2$

Regularized least-squares fit (theory of RKHS)

$$f_{\text{RKHS}} = \arg\min_{f \in \mathcal{H}} \left(\sum_{m=1}^{M} |y_m - f(\boldsymbol{x}_m)|^2 + \lambda R(f) \right) \quad \text{with} \quad R(f) = \|f\|_{\mathcal{H}}^2 \qquad \Rightarrow \quad \text{kernel estimator}$$
(Wahba 1990; Schölkopf 2001)

Can your learn the map y = f(x) ?

4

(Poggio-Girosi 1990)

OUTLINE

Introduction

- Learning as an inverse problem
- Teaser: Search of the best learner

Foundations of functional learning

- Banach spaces and duality mappings
- Unifying representer theorem NEW

From classical to modern regularization-based techniques

- Kernel methods
- Smoothing splines
- Sparse adaptive splines

Deep neural networks vs. deep splines

- Continuous piecewise linear (CPWL) functions / splines
- Representer theorem for deep neural networks

Swiss National Science Foundation

FNSNF

General notion of Banach space

Normed space: vector space ${\mathcal X}$ equipped with a norm $\|\cdot\|_{{\mathcal X}}$

Convergent sequence of functions (φ_i) in \mathcal{X} :

 $\lim_i \varphi_i = \varphi; \quad \text{i.e., } \lim_i \|\varphi - \varphi_i\|_{\mathcal{X}} = 0$

Stefan Banach (1892-1945)

Definition

A Banach space is a **complete normed** space \mathcal{X} ; that is, such that $\lim_{i} \varphi_{i} = \varphi \in \mathcal{X}$ for any convergent sequence (φ_{i}) in \mathcal{X} .

- Generality of the concept
 - Linear space of vectors $\boldsymbol{u} = (u_1, \dots, u_N) \in \mathbb{R}^N$
 - Linear space of functions $u : \mathbb{R}^d \to \mathbb{R}$ Linear space of vector-valued functions $u = (u_1, \dots, u_N) : \mathbb{R}^d \to \mathbb{R}^N$
 - Space of linear functional $u: \mathcal{X} \to \mathbb{R}$
- Linear space $\mathcal{L}(\mathcal{X},\mathcal{Y})$ of bounded operators $U:\mathcal{X}\to\mathcal{Y}$

7

8

Dual of a Banach space

Generic duality bound

Dual of the Banach space $(\mathcal{X}, \|\cdot\|_{\mathcal{X}})$: \mathcal{X}' = space of linear functionals $g : f \mapsto \langle g, f \rangle \stackrel{\Delta}{=} g(f) \in \mathbb{R}$ that are continuous on \mathcal{X}

 \mathcal{X}' is a Banach space equipped with the **dual norm**:

$$\|g\|_{\mathcal{X}'} = \sup_{f \in \mathcal{X} \setminus \{0\}} \left(\frac{\langle g, f \rangle}{\|f\|_{\mathcal{X}}}\right)$$

$$\Rightarrow \quad \|g\|_{\mathcal{X}'} \ge \frac{|\langle g, f \rangle|}{\|f\|_{\mathcal{X}}}, \quad f \neq 0$$

For any $f \in \mathcal{X}, g \in \mathcal{X}'$: $|\langle g, f \rangle| \le ||g||_{\mathcal{X}'} ||f||_{\mathcal{X}}$

Duals of L_p spaces: $(L_p(\mathbb{R}^d))' = L_{p'}(\mathbb{R}^d)$ with $\frac{1}{p} + \frac{1}{p'} = 1$ for $p \in (1,\infty)$

$$\label{eq:Holder} \begin{array}{ll} \mbox{Hölder inequality:} & |\langle f, \varphi \rangle| \leq \int_{\mathbb{R}^d} |f(\boldsymbol{r}) \varphi(\boldsymbol{r})| \; \mathrm{d} \boldsymbol{r} \leq \|f\|_{L_p} \|\varphi\|_{L_{p'}} \end{array}$$

Riesz conjugate for Hilbert spaces

Duality bound for Hilbert spaces (equivalent to Cauchy-Schwarz inequality)

For all $(u, v) \in \mathcal{H} \times \mathcal{H}'$: $|\langle u, v \rangle| \le ||u||_{\mathcal{H}} ||v||_{\mathcal{H}'}$

Definition

The **Riesz conjugate** of $u \in \mathcal{H}$ is the unique element $u^* \in \mathcal{H}'$ such that

$$\langle u, u^* \rangle = \langle u, u \rangle_{\mathcal{H}} = \|u\|_{\mathcal{H}}^2 = \|u\|_{\mathcal{H}} \|u^*\|_{\mathcal{H}'}$$

(sharp duality bound)

+

- Properties
 - Norm preservation: $||u||_{\mathcal{H}} = ||u^*||_{\mathcal{H}'}$
 - $u^* = \mathbb{R}^{-1}\{u\}$ (inverse Riesz map)
 - Invertibility: $u = (u^*)^* = R\{u^*\}$
 - Linearity: $(u_1 + u_2)^* = u_1^* + u_2^*$

 $(\mathcal{H}')' = \mathcal{H}$ (reflexivity)

Generalization: Duality mapping

Definition

Let (X, X') be a dual pair of Banach spaces. Then, the elements $f^* \in X'$ and $f \in X$ form a **conjugate pair** if

- $||f^*||_{\mathcal{X}'} = ||f||_{\mathcal{X}}$ (norm preservation), and
- $\langle f^*, f \rangle_{\mathcal{X}' \times \mathcal{X}} = \|f^*\|_{\mathcal{X}'} \|f\|_{\mathcal{X}}$ (sharp duality bound).

For any given $f \in \mathcal{X}$, the set of admissible conjugates defines the **duality mapping**

$$J(f) = \{ f^* \in \mathcal{X}' : \|f^*\|_{\mathcal{X}'} = \|f\|_{\mathcal{X}} \text{ and } \langle f^*, f \rangle_{\mathcal{X}' \times \mathcal{X}} = \|f^*\|_{\mathcal{X}'} \|f\|_{\mathcal{X}} \},$$

which is a non-empty subset of \mathcal{X}' . Whenever the duality mapping is single-valued (for instance, when \mathcal{X}' is strictly convex), one also defines the duality operator $J_{\mathcal{X}}: \mathcal{X} \to \mathcal{X}'$, which is such that $f^* = J_{\mathcal{X}}(f)$.

(Beurling-Livingston, 1962)

9

Arne Beurling (1905-1986)

Frigyes Riesz (1880-1956)

Properties of duality mapping

Theorem

Let $(\mathcal{X}, \mathcal{X}')$ be a dual pair of Banach spaces. Then, the following holds:

- 1. Every $f \in \mathcal{X}$ admits at least one conjugate $f^* \in \mathcal{X}'$.
- 2. For every $f \in \mathcal{X}$, the set J(f) is convex and weak-* closed in \mathcal{X}' .
- 3. The duality mapping is **single-valued** if \mathcal{X}' is **strictly convex**; the latter condition is also necessary if \mathcal{X} is reflexive.

 \mathcal{X} is *strictly convex* if, for all $f_1, f_2 \in \mathcal{X}$ such that $||f_1||_{\mathcal{X}} = ||f_2||_{\mathcal{X}} = 1$ and $f_1 \neq f_2$, one has $||\lambda f_1 + (1 - \lambda)f_2||_{\mathcal{X}} < 1$ for any $\lambda \in (0, 1)$.

 \mathcal{X} is *reflexive* if $\mathcal{X}'' = \mathcal{X}$.

Mother of all representer theorems

$$\arg\min_{f\in\mathcal{X}'} E(\boldsymbol{y},\boldsymbol{\nu}(f)) + \psi\left(\|f\|_{\mathcal{X}'}\right)$$

Mathematical assumptions:

- $(\mathcal{X}, \mathcal{X}')$ is a dual pair of Banach spaces.
- $\mathcal{N}_{\nu} = \operatorname{span}\{\nu_m\}_{m=1}^M \subset \mathcal{X}$ with the ν_m being linearly independent.
- $\nu : \mathcal{X}' \to \mathbb{R}^M : f \mapsto (\langle \nu_1, f \rangle, \dots, \langle \nu_M, f \rangle)$ is the linear measurement operator (it is weak* continuous on \mathcal{X}' because $\nu_1, \dots, \nu_M \in \mathcal{X}$).
- $E: \mathbb{R}^M \times \mathbb{R}^M \to \mathbb{R}^+$ is a strictly-convex loss functional.
- $\psi : \mathbb{R}^+ \to \mathbb{R}^+$ is some arbitrary strictly-increasing convex function.

General representer theorem

Theorem

For any fixed $y \in \mathbb{R}^M$, the solution set of the **generic** optimization problem

$$S = \arg\min_{f \in \mathcal{X}'} E(\boldsymbol{y}, \boldsymbol{\nu}(f)) + \psi(\|f\|_{\mathcal{X}'})$$

is **non-empty**, **convex** and weak*-compact, and all solutions $f_0 \in S \subset \mathcal{X}'$ are $(\mathcal{X}', \mathcal{X})$ -conjugate of **a common** $\nu_0 \in \mathcal{N}_{\nu} = \operatorname{span}\{\nu_m\}_{m=1}^M \subset \mathcal{X}$.

The parametric form of the solution depends on the space type.

1) If \mathcal{X}' is a **Hilbert space** and ψ is strictly convex, then the solution is unique and it admits a **linear expansion** with coefficients $(a_m) \in \mathbb{R}^M$

$$f_0 = \sum_{m=1}^m a_m \varphi_m,$$

M

where $\varphi_m = J_{\mathcal{X}} \{ \nu_m \} \in \mathcal{X}'$ with $J_{\mathcal{X}}$ the Riesz map $\mathcal{X} \to \mathcal{X}'$.

(Unser, FoCM 2021)

General representer theorem (Cont'd)

2) If \mathcal{X}' is a strictly convex Banach space and ψ is strictly convex, then the solution is unique and it admits the representation with $(a_m) \in \mathbb{R}^M$

$$f_0 = \mathcal{J}_{\mathcal{X}} \left\{ \sum_{m=1}^M a_m \nu_m \right\},$$

where $J_{\mathcal{X}}$ is the (nonlinear) duality operator $\mathcal{X} \to \mathcal{X}'$.

3) Otherwise, when \mathcal{X}' is **not strictly convex**, the solution set *S* is the convex hull of its **extreme points**, which can all be expressed as

$$f_0 = \sum_{k=1}^{K_0} c_k e_k,$$

for some $K_0 \leq M$, $c_1, \ldots, c_{K_0} \in \mathbb{R}$, where $e_1, \ldots, e_{K_0} \in \mathcal{X}'$ are some extreme points of the unit ball $B_{\mathcal{X}'} = \{x \in \mathcal{X} : ||x||_{\mathcal{X}'} \leq 1\}$.

(Boyer-Chambolle-De Castro-Duval-De Gournay-Weiss, arXiv:1806.09810, 2019)

Extreme points

Definition

Let *S* be a convex set. Then, the point $x \in S$ is **extreme** if it cannot be expressed as a (non-trivial) convex combination of any other points in *S*.

- Extreme points of unit ball in $\ell_p(\mathbb{Z})$
 - $\ell_{\infty}(\mathbb{Z}): \quad e_k[n] = \pm 1$
 - $\ell_1(\mathbb{Z}): e_k = \pm \delta[\cdot n_k]$ (Kronecker impulse)
 - $\ell_p(\mathbb{Z})$ with $p \in (1,\infty)$: $e_k = u/\|u\|_{\ell_p}$ for any $u \in \ell_p(\mathbb{Z})$

Definition of *strictly convexity* of a Banach space: all boundary points are extreme !!!

OUTLINE

- Introduction
- Foundations of functional learning

From classical to modern regularization-based techniques

- Learning in RKHS
- Kernel methods of ML
- Smoothing splines
- Sparse kernel methods
- Sparse adaptive splines
- Lipchitz splines
- Deep neural networks vs. deep splines

1. Learning in reproducing kernel Hilbert space

Definition

A Hilbert space \mathcal{H} of functions on \mathbb{R}^d is called a **reproducing kernel Hilbert space** (RKHS) if $\delta(\cdot - \boldsymbol{x}_0) \in \mathcal{H}'$ for any $\boldsymbol{x}_0 \in \mathbb{R}^d$. The corresponding unique **Hilbert conjugate** $h(\cdot, \boldsymbol{x}_0) = (\delta(\cdot - \boldsymbol{x}_0))^* \in \mathcal{H}$ when indexed by \boldsymbol{x}_0 is called the **reproducing kernel** of \mathcal{H} .

Learning problem

Given the data $(\boldsymbol{x}_m, y_m)_{m=1}^M$ with $\boldsymbol{x}_m \in \mathbb{R}^d$, find the function $f_0 : \mathbb{R}^d \to \mathbb{R}$ s.t.

$$f_0 = \arg\min_{f \in \mathcal{H}} \left(\sum_{m=1}^M E_m(y_m, f(\boldsymbol{x}_m)) + \psi(\|f\|_{\mathcal{H}}) \right)$$

- $E_m : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ (strictly convex)
- $\psi: \mathbb{R} \to \mathbb{R}^+$ (strictly increasing and convex)

Learning in RKHS (Cont'd)

- Special case of general representer theorem
 - $\mathcal{X} = \mathcal{H}', \ \mathcal{X}' = \mathcal{H}'' = \mathcal{H}$ (all Hilbert spaces are reflexive)
 - $u_m = \delta(\cdot x_m)$ (Dirac sampling functionals)

Additive loss:
$$E(\boldsymbol{y}, \boldsymbol{z}) = \sum_{m=1}^{M} E_m(y_m, z_m)$$
 specific of ML

Key observation

Reproducing kernel = Schwartz kernel of Riesz map

$$R = J_{\mathcal{H}'} : \mathcal{H}' \to \mathcal{H} : \nu \mapsto \int_{\mathbb{R}^d} h(\cdot, \boldsymbol{y}) \nu(\boldsymbol{y}) d\boldsymbol{y} \qquad \Rightarrow \quad \varphi_m = J_{\mathcal{H}'} \{ \boldsymbol{\delta}(\cdot - \boldsymbol{x}_m) \} = h(\cdot, \boldsymbol{x}_m)$$

Implied form of unique solution = linear kernel expansion

$$f_0(\boldsymbol{x}) = \sum_{m=1}^M a_m \varphi_m(\boldsymbol{x}) = \sum_{m=1}^M a_m h(\boldsymbol{x}, \boldsymbol{x_m})$$

(Schölkopf representer theorem, 2001)

2. Regularization with a LSI operator = kernel methods of ML

Quadratic Tikhonov regularization functional

$$R(f) = \|f\|_{\mathcal{H}}^2 = \|\mathbf{L}f\|_{L_2}^2 = \int_{\mathbb{R}^N} |\mathbf{L}f(\boldsymbol{x})|^2 \mathrm{d}\boldsymbol{x}$$

L: Linear shift-invariant (LSI), invertible regularization operator

 $\widehat{L}(\boldsymbol{\omega})$: frequency response of L

Key observation

$$\begin{split} & \textbf{Reproducing kernel} = \text{Impulse response of } L^{-1}L^{-1*} = (L^*L)^{-1} \\ & \nu^* = J_{\mathcal{H}'}\{\nu\} = h * \nu \quad \text{where} \quad h = \mathcal{F}^{-1}\left\{\frac{1}{|\widehat{L}(\boldsymbol{\omega})|^2}\right\} \in L_1(\mathbb{R}^d) \end{split}$$

Hilbertian isometries $\begin{array}{ccc} \mathcal{H}' & \stackrel{\mathrm{L}^{-1*}}{\underset{\mathrm{L}^{*}}{\overset{\mathrm{L}}{\overset{\mathrm{C}}}}} & L_2(\mathbb{R}^d) & \stackrel{\mathrm{L}^{-1}}{\underset{\mathrm{L}}{\overset{\mathrm{C}}{\overset{\mathrm{C}}}}} & \mathcal{H} \end{array}$

(Poggio-Girosi 1990)

Parametric form of solution = expansion of kernels centered on data points

$$f_0(\boldsymbol{x}) = \sum_{m=1}^M a_m \mathcal{J}_{\mathcal{H}'} \{ \delta(\cdot - \boldsymbol{x}_m) \}(\boldsymbol{x}) = \sum_{m=1}^M a_m h(\boldsymbol{x} - \boldsymbol{x}_m)$$

3. 9	Sm	ooth	ing	spl	ines

$$f_0 = \arg\min_{f: \mathbb{R} \to \mathbb{R}} \left(\sum_{m=1}^M |f(x_m) - y_m|^2 + \lambda \int_{\mathbb{R}} \left| \frac{\mathrm{d}f(x)}{\mathrm{d}x} \right|^2 \mathrm{d}x \right)$$

(Schoenberg 1964; de Boor 1966)

Smoothness regularization (spline semi-norm)

$$R(f) = \|\mathbf{D}f\|_{L_2}^2 \quad \text{with} \quad \mathbf{D} = \frac{\mathrm{d}}{\mathrm{d}x}; \qquad \text{Null space} : \mathcal{N}_{\mathbf{D}} = \{p(x) = a_0 : a_0 \in \mathbb{R}\}$$

Direct-sum RKHS topology: $L_{2,D}(\mathbb{R}) = \mathcal{H}_D \oplus \mathcal{N}_D$

D has a unique inverse only if one factors out the null space

Impulse response of
$$(D^*D)^{-1}$$
: $h(x) = \mathcal{F}^{-1}\left\{\frac{1}{|\omega|^2}\right\}(x) = \frac{1}{2}|x|$

Solution = linear spline with knots at x_1, \ldots, x_M

$$f_0(x) = \frac{a_0 + \sum_{m=1}^M a_m |x - x_m|}{m}$$

4. Sparse kernel expansions

Sparsity-promoting regularization functional

$$R(f) = \|\mathbf{L}f\|_{L_1} = \int_{\mathbb{R}^N} |\mathbf{L}f(\boldsymbol{x})| \mathrm{d}\boldsymbol{x}$$

L: Linear shift-invariant (LSI), invertible regularization operator

 $\widehat{L}(\boldsymbol{\omega})$: frequency response of L

Banach isometry
$$L_1(\mathbb{R}^d) \xrightarrow[L]{L^{-1}} L_{1,L}(\mathbb{R}^d)$$

Theoretical roadblock: The general representer theorem does not apply because **there exists** no predual space \mathcal{X} such that $L_1(\mathbb{R}^d) = \mathcal{X}'$.

The optimization problem is ill-defined and does not admit a solution !

Proper continuous counterpart of ℓ_1 **-norm**

Dual definition of ℓ_1 -norm (in finite dimensions only)

N

$$\|m{f}\|_{\ell_1} = \sum_{n=1}^\infty |f_n| = \sup_{m{u} \in \mathbb{R}^N: \; \|m{u}\|_\infty \leq 1} \langle m{f}, m{u}
angle$$

Space $C_0(\mathbb{R}^d)$ of functions on \mathbb{R}^d that are continuous, bounded, and decaying at infinity

$$C_0(\mathbb{R}^d) = \overline{(\mathcal{S}(\mathbb{R}^d), \|\cdot\|_{L_\infty})} \subset L_\infty(\mathbb{R}^d)$$

Space of **bounded Radon measures** on \mathbb{R}^d

$$\mathcal{M}(\mathbb{R}^d) = \left(C_0(\mathbb{R}^d)\right)' = \{f \in \mathcal{S}'(\mathbb{R}^d) : \|f\|_{\mathcal{M}} \stackrel{\vartriangle}{=} \sup_{\varphi \in \mathcal{S}(\mathbb{R}^d) : \|\varphi\|_{\infty} \le 1} \langle f, \varphi \rangle < +\infty \}$$

- Superset of $L_1(\mathbb{R}^d)$ $\forall f \in L_1(\mathbb{R}^d) : \|f\|_{\mathcal{M}} = \|f\|_{L_1} \Rightarrow L_1(\mathbb{R}^d) \subset \mathcal{M}(\mathbb{R}^d)$
- Extreme points of unit ball in $\mathcal{M}(\mathbb{R}^d)$: $e_k = \pm \delta(\cdot \boldsymbol{\tau}_k)$ with $\boldsymbol{\tau}_k \in \mathbb{R}^d$

Johann Radon (1887-1956)

4. Sparse kernel expansions (2nd attempt)

Sparsity-promoting regularization functional

$$R(f) = \|\mathbf{L}f\|_{\mathcal{M}} = \sup_{\varphi \in C_0(\mathbb{R}^d) : \|\varphi\|_{L_{\infty}} \le 1} \langle \mathbf{L}f, \varphi \rangle$$

L: Linear shift-invariant (LSI), invertible regularization operator

 $\widehat{L}(\boldsymbol{\omega})$: frequency response of L

Impulse response of L^{-1} : $h = \mathcal{F}^{-1}\left\{\frac{1}{\widehat{L}(\boldsymbol{\omega})}\right\} \in L_1(\mathbb{R}^d)$

$$\begin{array}{c} \text{Banach isometry} \\ \mathcal{M}(\mathbb{R}^d) & \stackrel{\text{L}^{-1}}{\underset{\text{L}}{\overset{\mathcal{M}_{\text{L}}}{\overset{\mathcal{M}^{-1}}{\underset{\text{L}}{\underset{\text{L}}{\overset{\mathcal{M}^{-1}}{\underset{\text{L}}{\underset{\text{L}}{\overset{\mathcal{M}^{-1}}{\underset{\text{L}}{\underset{\text{L}}{\underset{\text{L}}{\overset{\mathcal{M}^{-1}}{\underset{\text{L}}}{\underset{\text{L}}{\underset{\text{L}}{\underset{\text{L}}{\underset{\text{L}}{\underset{\text{L}}{\underset{\text{L}}{\underset{\text{L}}{\underset{\text{L}}{\underset{\text{L}}{\underset{\text{L}}{\underset{\text{L}}{\underset{\text{L}}{\underset{\text{L}}}{\underset{\text{L}}{\underset{\text{L}}{\underset{\text{L}}{\underset{\text{L}}{\underset{\text{L}}}{\underset{\text{L}}{\underset{\text{L}}{\underset{\text{L}}{\underset{\text{L}}{\underset{\text{L}}}{\underset{\text{L}}{\underset{\text{L}}{\underset{\text{L}}}{\underset{\text{L}}{\underset{L}}{\underset{R}}{\underset{R}}{\underset{L}}{\underset{L}}{\underset{L}}{\underset{L}}{\underset{L}}{\underset{R}}{\underset{L}}{\underset{L}}{\underset{L}}}{\underset{L}}{\underset{L}}{\underset{L}}{\underset{L}}{\underset{L}}{\underset{L}}{\underset{L}}{\underset{L}}{\underset{L}}{\underset{L}}}{\underset{L}}{\underset{L}}{\underset{L}}{\underset{L}}{\underset{L}}{\underset{L}}{\underset{L}}}{\underset{L}}{\underset{L}}{\underset{L}}{\underset{L}}{\underset{L}}{\underset{L}}{\underset{L}}}{\underset{L}}{\underset{L}}{\underset{L}}{\underset{L}}{\underset{L}}{\underset{L}}{\underset{L}}}{\underset{L}}{\underset$$

Extreme points:
$$e_k = L^{-1} \{ \delta(\cdot - \boldsymbol{\tau}_k) \}$$

$$\begin{aligned} & \text{Corollary (3rd case of representer theorem)} \\ & \text{The extreme points } f_0 \text{ of } S = \arg\min_{f \in \mathcal{M}_{\mathrm{L}}(\mathbb{R}^d)} \left(\sum_{m=1}^M E_m \big(y_m, f(\boldsymbol{x}_m) \big) + \lambda \|\mathrm{L}f\|_{\mathcal{M}} \right) \text{ can all be expressed as} \\ & f_0(\boldsymbol{x}) = \sum_{k=1}^{K_0} a_k h(\boldsymbol{x} - \boldsymbol{\tau}_k) \\ & \text{for some } K_0 \leq M, \, \boldsymbol{\tau}_1, \dots, \boldsymbol{\tau}_{K_0} \in \mathbb{R}^d \text{ and } \boldsymbol{a} = (a_k) \in \mathbb{R}^{K_0}. \text{ Moreover, } \|\mathrm{L}f_0\|_{\mathcal{M}} = \sum_{k=1}^{K_0} |a_k| = \|\boldsymbol{a}\|_{\ell_1}. \end{aligned}$$

5. Sparse adaptive spline

$$f_0 = \arg\min_{f \in \mathcal{M}_{D^2}(\mathbb{R})} \left(\sum_{m=1}^M |f(x_m) - y_m|^2 + \lambda \|\mathbf{D}^2 f\|_{\mathcal{M}} \right)$$
(Mamr

Mammen 1997; Unser 2017)

Sparsity-promoting regularization

$$R(f) = \|D^2 f\|_{\mathcal{M}} \qquad \text{Null space} : \mathcal{N}_{D^2} = \{p(x) = b_0 + b_1 x : b_0, b_1 \in \mathbb{R}\}$$

 \blacksquare Direct-sum Banach topology: $\mathcal{M}_{D^2}(\mathbb{R}) = \mathcal{U}_{D^2} \oplus \mathcal{N}_{D^2}$

 D^2 has a unique invertise only if one factors out the null space

Impulse response of ${\rm D}^{-2}$ (two-fold integrator): $\quad h(x)=(x)_+={\rm ReLU}(x)$

(Debarre arXiv 2020)

Solution = linear spline with (few) adaptive knots at $\tau_1, \ldots, \tau_{K_0}$

$$f_0(x) = b_0 + b_1 x + \sum_{k=1}^{K_0} a_k (x - \tau_k)_+$$

24

Comparison of linear interpolators

(Unser JMLR 2019; Lemma 2)

6. Lipschitz splines

$$f_0 = \arg\min_{f \in W_{\infty}^1(\mathbb{R})} \left(\sum_{m=1}^M |f(x_m) - y_m|^2 + \lambda \|\mathbf{D}f\|_{L_{\infty}} \right)$$

Lipschitz boundedness constraint

$$\begin{split} R(f) &= \| \mathrm{D}f \|_{L_{\infty}} \qquad \text{Null space} : \mathcal{N}_{\mathrm{D}} = \{ p(x) = b_0 : b_0 \in \mathbb{R} \} \\ \text{Extreme points of unit ball in } L_{\infty}(\mathbb{R}) : e_k \text{ such that } e_k(x) = \pm 1 \end{split}$$

• Direct-sum Banach topology: $W^1_{\infty}(\mathbb{R}) = \mathcal{U}_D \oplus \mathcal{N}_D$

 \boldsymbol{D} has a unique inverse only if one factors out the null space

$$u_k = D^{-1}e_k(x) = \int_{-\infty}^x e_k(t)dt + C_k$$
: linear spline with binary slope (±1)

Solution = **linear spline** with with many oscillations (non-unique)

$$f_0(x) = \mathbf{b}_0 + \sum_{k=1}^{K_0} a_k u_k(x)$$

(Aziznejad et al., ArXiv 2022)

26

OUTLINE

- Introduction
- Foundations of functional learning
- From classical to modern regularization-based techniques
- Deep neural networks vs. deep splines
 - Background
 - Continuous piecewise linear (CPWL) functions / splines
 - Variational formulation of shallow nets
 - Representer theorem for deep neural networks

Deep neural networks and splines

- Preferred choice of activation function: ReLU
 - ReLU works nicely with dropout / ℓ_1 -regularization
 - Networks with hidden ReLU are easier to train
 - State-of-the-art performance

 $\operatorname{ReLU}(x;b) = (x-b)_+$

(Glorot ICAIS 2011)

(LeCun-Bengio-Hinton Nature 2015)

- Deep nets as Continuous PieceWise-Linear maps
 - $\blacksquare \ \mathsf{ReLU} \Rightarrow \mathsf{CPWL}$
 - CPWL ⇒ Deep ReLU network
- Deep ReLU nets = hierarchical splines
 - ReLU is a piecewise-linear spline

(Poggio-Rosasco 2015)

Feedforward deep neural network

Continuous-PieceWise Linear (CPWL) functions

■ 1D: Non-uniform spline de degree 1

Partition: $\mathbb{R} = \bigcup_{k=0}^{K} P_k$ with $P_k = [\tau_k, \tau_{k+1}), \tau_0 = -\infty < \tau_1 < \cdots < \tau_K < \tau_{K+1} = +\infty$.

The function $f_{\rm spline}:\mathbb{R}\to\mathbb{R}$ is a piecewise-linear spline with knots au_1,\ldots, au_K if

- (*i*) for $x \in P_k$: $f_{\text{spline}}(x) = f_k(x) \stackrel{\Delta}{=} a_k x + b_k$ with $(a_k, b_k) \in \mathbb{R}^2$, $k = 0, \dots, K$
- $(ii) f_{\rm spline}$ is continuous $\mathbb{R} \to \mathbb{R}$

$$I_{\text{spline}}(x) = \tilde{b}_0 + \tilde{b}_1 x + \sum_{k=1}^K \tilde{a}_k (x - \tau_k)_+ \quad \text{with } \tilde{b}_0, \tilde{b}_1 \in \mathbb{R}, \, (\tilde{a}_k) \in \mathbb{R}^K.$$

r	٦		4
	1	1	
•	-		18

CPWL functions in high dimensions

Multidimensional generalization

Partition of domain into a finite number of non-overlapping convex polytopes; i.e.,

$$\mathbb{R}^N = igcup_{k=1}^K P_k$$
 with $\mu(P_{k_1} \cap P_{k_2}) = 0$ for all $k_1
eq k_2$

The function $f_{\text{CPWL}} : \mathbb{R}^N \to \mathbb{R}$ is **continuous piecewise-linear** with partition P_1, \ldots, P_K

- (i) for $\boldsymbol{x} \in P_k : f_{\text{CPWL}}(\boldsymbol{x}) = f_k(\boldsymbol{x}) \stackrel{\scriptscriptstyle \Delta}{=} \mathbf{a}_k^T \boldsymbol{x} + b_k$ with $\mathbf{a}_k \in \mathbb{R}^N, b_k \in \mathbb{R}, \, k = 1, \dots, K$
- $(ii) f_{\rm CPWL}$ is continuous $\mathbb{R}^N \to \mathbb{R}$

The vector-valued function $\mathbf{f}_{\mathrm{CPWL}} = (f_1, \dots, f_M) : \mathbb{R}^N \to \mathbb{R}^M$ is a CPWL if each component function $f_m : \mathbb{R}^N \to \mathbb{R}$ is CPWL.

Algebra of CPWL functions

- any linear combination of (vector-valued) CPWL functions $\mathbb{R}^N \to \mathbb{R}^{N'}$ is CPWL, and,
- the composition $\mathbf{f}_2 \circ \mathbf{f}_1$ of any two CPWL functions with compatible domain and range—i.e., $\mathbf{f}_2 : \mathbb{R}^{N_1} \to \mathbb{R}^{N_2}$ and $\mathbf{f}_1 : \mathbb{R}^{N_0} \to \mathbb{R}^{N_1}$ —is CPWL $\mathbb{R}^{N_0} \to \mathbb{R}^{N_2}$.

Sketch of proof: The continuity property is preserved through composition. The composition of two affine transforms is an affine transform, including the scenari where the domain is partitioned.

• The max (resp. min) pooling of two (or more) CPWL functions is CPWL.

Implication for deep ReLU neural networks

 $\mathbf{f}_{\text{deep}}(\boldsymbol{x}) = \left(\boldsymbol{\sigma}_{L} \circ \boldsymbol{f}_{L} \circ \boldsymbol{\sigma}_{L-1} \circ \cdots \circ \boldsymbol{\sigma}_{2} \circ \boldsymbol{f}_{2} \circ \boldsymbol{\sigma}_{1} \circ \boldsymbol{f}_{1}\right)(\boldsymbol{x})$

- Each scalar neuron activation, $\sigma_{n,\ell}(x) = \text{ReLU}(x)$, is CPWL.
- Each layer function $\sigma_\ell \circ f_\ell(x) = (\mathbf{W}_\ell x + \mathbf{b}_\ell)_+$ is CPWL
- \blacksquare The whole feedforward network $\mathbf{f}_{\mathrm{deep}}:\mathbb{R}^{N_0}\to\mathbb{R}^{N_L}$ is CPWL
- This holds true as well for deep architectures that involve Max pooling for dimension reduction
- The CPWL also remains valid for more complicated neuronal responses as long as they are CPWL; that is, **linear splines**.

Limit behaviour of univariate shallow ReLU neural nets

Shallow univariate ReLU neural network with skip connection

$$f_{\theta}(x) = c_0 + c_1 x + \sum_{k=1}^{K} v_k (w_k x - b_k)_+ \qquad \qquad = c_0 + c_1 x + \sum_{k=1}^{K_0} a_k (x - \tau_k)_+$$

Standard training with weight decay

(NN-1):
$$\arg\min_{\theta = (\mathbf{v}, \mathbf{w}, \mathbf{b}, \mathbf{c})} \sum_{m=1}^{M} |y_m - f_{\theta}(x_m)|^2 + \frac{\lambda}{2} \sum_{k=1}^{K} |v_k|^2 + |w_k|^2$$

Theorem

For any $K \ge K_0$ (with $K_0 < M$), the solution of (DNN-1) is achieved by the **sparse adaptive spline**:

$$f_{\text{spline}} = \arg \min_{f \in \text{BV}^{(2)}(\mathbb{R})} \left(\sum_{m=1}^{\infty} |y_m - f(x_m)|^2 + \lambda \| \mathbf{D}^2 f \|_{\mathcal{M}} \right)$$

Arguments for the proof:

- Scale invariance of ReLU architecture: For any $\gamma > 0$, the map $(v_k, w_k) \mapsto (\gamma v_k, w_k/\gamma)$ does not affect f_{θ} .
- At the optimum of (NN-1), $|w_k| = |v_k|$, for $k = 1, \ldots, K$ and $\mathrm{TV}^{(2)}(f_{\theta}) = \sum_{k=1}^{K} |a_k|$ with $a_k = v_k |w_k|$.

(Savarese 2019; Parhi-Nowak 2020)

35

K neurons

The Radon transform and the FBP algorithm

Unit sphere: $\mathbb{S}^{d-1} = \{ \boldsymbol{\xi} \in \mathbb{R}^d : \| \boldsymbol{\xi} \| = 1 \}$

Radon transform of $f \in L_1(\mathbb{R}^d)$

$$\mathbf{R}{f}(t,\boldsymbol{\xi}) = \int_{\mathbb{R}^d} \delta(t - \boldsymbol{\xi}^{\mathsf{T}} \boldsymbol{x}) f(\boldsymbol{x}) \mathrm{d}\boldsymbol{x}, \quad (t,\boldsymbol{\xi}) \in \mathbb{R} \times \mathbb{S}^{d-1}$$

Reconstruction from $g(t, \boldsymbol{\xi}) = R\{f\}(t, \boldsymbol{\xi})$: the **Filtered BackProjection** algorithm

 $f = \mathbf{R}^* \mathbf{K}_{\mathrm{rad}} \{g\}$

- $\label{eq:Krad} \begin{tabular}{ll} $\mathbb{K}_{\rm rad}$: "radial" filtering in Radon space along the variable t. Frequency response: $\widehat{K}_{\rm rad}(\omega) \propto |\omega|^{d-1}$$
- R*: backprojection operator (the adjoint of R)

Hyperplane $P_{\boldsymbol{\xi}_0,t_0} = \{ \boldsymbol{x} \in \mathbb{R}^d : \boldsymbol{\xi}_0^{\mathsf{T}} \boldsymbol{x} = t_0 \}$

Limit behaviour of multivariate 2-layer ReLU neural nets

Shallow ReLU neural network $\mathbb{R}^d \to \mathbb{R}$ with skip connection

$$f_{\theta}(\boldsymbol{x}) = c_0 + c_1^{\mathsf{T}} \boldsymbol{x} + \sum_{k=1}^{K} v_k (\boldsymbol{w}_k^{\mathsf{T}} \boldsymbol{x} - b_k)_+ \qquad \qquad = c_0 + c_1^{\mathsf{T}} \boldsymbol{x} + \sum_{k=1}^{K_0} a_k (\boldsymbol{\xi}_k^{\mathsf{T}} \boldsymbol{x} - \tau_k)_+$$

Standard training with weight decay on $\mathbf{v} = (v_k)$ and $\mathbf{W} = [\boldsymbol{w}_1 \ \dots \boldsymbol{w}_K]$

(NN-d):
$$\arg\min_{\boldsymbol{\theta}=(\mathbf{v},\mathbf{W},\mathbf{b},\mathbf{c})} \sum_{m=1}^{M} |y_m - f_{\boldsymbol{\theta}}(\boldsymbol{x}_m)|^2 + \frac{\lambda}{2} \sum_{k=1}^{K} |v_k|^2 + \|\boldsymbol{w}_k\|^2$$

Theorem

For any $K \ge K_0$ (with $K_0 < M$), the solution of (NN-*d*) is achieved by the **sparse ridge spline**:

$$f_{\text{ridge}} = \arg \min_{f \in \mathcal{M}_{\Delta_{\mathrm{R}}}(\mathbb{R}^d)} \left(\sum_{m=1}^{M} |y_m - f(\boldsymbol{x}_m)|^2 + \lambda \| \mathrm{K}_{\mathrm{rad}} \mathrm{R} \Delta f \|_{\mathcal{M}(\mathbb{R} \times \mathbb{S}^{d-1})} \right)$$

Delicate point: Proper delineation of the native space $\mathcal{M}_{\Delta_{\mathbf{R}}}(\mathbb{R}^d)$

- $\blacksquare \ \mathcal{M}_{\mathrm{Rad}}(\mathbb{R} \times \mathbb{S}^{d-1}): \text{space of bounded Radon-compatible measures} \\ \mathcal{M}_{\mathrm{Rad}} \subset \mathcal{S}'_{\mathrm{Rad}} = \mathrm{K}_{\mathrm{rad}} \mathrm{R}\big(\mathcal{S}'(\mathbb{R}^d)\big)$
- $\blacksquare \mathcal{M}_{\Delta_{\mathrm{R}}}(\mathbb{R}^d) = \text{Banach space that is isometrically isomorphic to } \mathcal{M}_{\mathrm{Rad}} \times \{c_0 + c_1^\mathsf{T} x\}$
- $\blacksquare \text{ Regularization operator } \Delta_{R} = K_{rad} R\Delta : \mathcal{M}_{\Delta_{R}}(\mathbb{R}^{d}) \to \mathcal{M}_{Rad}$

(Ongie et al. 2020; Parhi-Nowak 2021)

Refinement: free-form activation functions

- Layers: $\ell = 1, \ldots, L$
- Deep structure descriptor: (N_0, N_1, \cdots, N_L)
- Neuron or node index: $(n, \ell), n = 1, \cdots, N_{\ell}$
- Activation function: $\sigma : \mathbb{R} \to \mathbb{R}$ (ReLU)
- Linear step: $\mathbb{R}^{N_{\ell-1}} \to \mathbb{R}^{N_{\ell}}$ $f_{\ell}: x \mapsto f_{\ell}(x) = \mathbf{W}_{\ell}x + \mathbf{b}_{\ell}$
- Nonlinear step: $\mathbb{R}^{N_{\ell}} \to \mathbb{R}^{N_{\ell}}$ $\sigma_{\ell} : x \mapsto \sigma_{\ell}(x) = (\sigma_{n,\ell}(x_1), \dots, \sigma_{N_{\ell},\ell}(x_{N_{\ell}}))$

$$\mathbf{f}_{ ext{deep}}(oldsymbol{x}) = (oldsymbol{\sigma}_L \circ oldsymbol{f}_L \circ oldsymbol{\sigma}_{L-1} \circ \cdots \circ oldsymbol{\sigma}_2 \circ oldsymbol{f}_2 \circ oldsymbol{\sigma}_1 \circ oldsymbol{f}_1)(oldsymbol{x})$$

Joint learning / training ?

Constraining activation functions

- Regularization functional
 - Should not penalize simple solutions (e.g., identity or linear scaling)
 - Should impose diffentiability (for DNN to be trainable via backpropagation)
 - Should favor simplest CPWL solutions; i.e., with "sparse 2nd derivatives"
- Second total-variation of $\sigma : \mathbb{R} \to \mathbb{R}$

$$TV^{(2)}(\sigma) \stackrel{\scriptscriptstyle \Delta}{=} \|D^2\sigma\|_{\mathcal{M}} = \sup_{\varphi \in \mathcal{S}(\mathbb{R}): \|\varphi\|_{\infty} \le 1} \langle D^2\sigma, \varphi \rangle$$

• Native space for $\left(\mathcal{M}(\mathbb{R}), \mathrm{D}^2\right)$

$$\mathrm{BV}^{(2)}(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} : \|\mathrm{D}^2 f\|_{\mathcal{M}} < \infty \}$$

Representer theorem for deep neural networks

Theorem $(TV^{(2)}$ -optimality of deep spline networks) (Unser, JMLR 2019) = neural network $f : \mathbb{R}^{N_0} \to \mathbb{R}^{N_L}$ with deep structure (N_0, N_1, \dots, N_L) $x \mapsto f(x) = (\sigma_L \circ \ell_L \circ \sigma_{L-1} \circ \dots \circ \ell_2 \circ \sigma_1 \circ \ell_1)(x)$ = normalized linear transformations $\ell_\ell : \mathbb{R}^{N_{\ell-1}} \to \mathbb{R}^{N_\ell}, x \mapsto U_\ell x$ with weights $U_\ell = [\mathbf{u}_{1,\ell} \cdots \mathbf{u}_{N_\ell,\ell}]^T \in \mathbb{R}^{N_\ell \times N_{\ell-1}}$ such that $||\mathbf{u}_{n,\ell}|| = 1$ = free-form activations $\sigma_\ell = (\sigma_{1,\ell}, \dots, \sigma_{N_\ell,\ell}) : \mathbb{R}^{N_\ell} \to \mathbb{R}^{N_\ell}$ with $\sigma_{1,\ell}, \dots, \sigma_{N_\ell,\ell} \in BV^{(2)}(\mathbb{R})$ Given a series data points $(x_m, y_m) m = 1, \dots, M$, we then define the training problem $\arg \max_{(\mathbf{U}_\ell), (\sigma_{n,\ell} \in BV^{(2)}(\mathbb{R}))} \left(\sum_{m=1}^M E(\mathbf{y}_m, \mathbf{f}(\mathbf{x}_m)) + \mu \sum_{\ell=1}^N R_\ell(\mathbf{U}_\ell) + \lambda \sum_{\ell=1}^L \sum_{n=1}^{N_\ell} TV^{(2)}(\sigma_{n,\ell}) \right)$ (1) = $E : \mathbb{R}^{N_L} \times \mathbb{R}^{N_L} \to \mathbb{R}^+$: arbitrary convex error function = $R_\ell : \mathbb{R}^{N_\ell \times N_{\ell-1}} \to \mathbb{R}^+$: convex cost If solution of (1) exists, then it is achieved by a **deep spline network** with activations of the form $\sigma_{n,\ell}(x) = b_{1,n,\ell} + b_{2,n,\ell} x + \sum_{k=1}^{K_{n,\ell}} a_{k,n,\ell}(x - \tau_{k,n,\ell})_+,$ with adaptive parameters $K_{n,\ell} \le M - 2, \tau_{1,n,\ell}, \dots, \tau_{K_{n,\ell},n,\ell} \in \mathbb{R}$, and $b_{1,n,\ell}, b_{2,n,\ell}, a_{1,n,\ell}, \dots, a_{K_{n,\ell},n,\ell} \in \mathbb{R}$.

Outcome of representer theorem

Each neuron (fixed index (n, ℓ)) is characterized by

- its number $0 \le K_{n,\ell}$ of knots (ideally, much smaller than M);
- the location $\{\tau_k = \tau_{k,n,\ell}\}_{k=1}^{K_{n,\ell}}$ of these knots (ReLU biases);
- the expansion coefficients $\mathbf{b}_{n,\ell} = (b_{1,n,\ell}, b_{2,n,\ell}) \in \mathbb{R}^2$, $\boldsymbol{a}_{n,\ell} = (a_{1,n,\ell}, \dots, a_{K,n,\ell}) \in \mathbb{R}^K$.

These parameters (including the number of knots) are **data-dependent** and adjusted automatically during training.

 \blacksquare Link with ℓ_1 minimization techniques

$$\mathrm{TV}^{(2)}\{\sigma_{n,\ell}\} = \sum_{k=1}^{K_{n,\ell}} |a_{k,n,\ell}| = \|\mathbf{a}_{n,\ell}\|_1$$

Deep spline networks: Discussion

- Global optimality achieved with spline activations
- Justification of popular schemes / Backward compatibility
 - Standard ReLU networks $(K_{n,\ell} = 1, b_{n,\ell} = 0)$
 - Linear regression: $\lambda \to \infty \Rightarrow K_{n,\ell} = 0$
 - State-of-the-art Parametric ReLU networks $(K_{n,\ell} = 1)$ 1 ReLU + linear term (per neuron)
 - Adaptive-piecewise linear (APL) networks

(Glorot *ICAIS* 2011) (LeCun-Bengio-Hinton *Nature* 2015)

(He et al. CVPR 2015)

 $(K_{n,\ell} = 5 \text{ or } 7, \ \boldsymbol{b}_{n,\ell} = \mathbf{0})$ (Agostinelli et al. 2015)

Deep spline networks (Cont'd)

- Key features
 - \blacksquare Direct control of complexity (number of knots): adjustment of λ
 - Ability to suppress unnecessary layers
- Challenges
 - Adaptive knots: more difficult optimization problem \Rightarrow In need of novel training algorithms
 - Optimal allocation of knots
 - $\ell_1\mbox{-minimization}$ with knot deletion mechanism (even for single layer)
 - Finding the tradeoff: more complex activations vs. deeper architectures

CONCLUSION: Return of the spline

- Foundations of functional learning
 - Functional optimization in Banach spaces (enabled by representer theorem)
 - Hilbert spaces: the tools of classical ML
 - Non-convex Banach spaces: for sparsity-promoting regularization (e.g., CS)
- Splines and machine learning
 - Traditional kernel methods are closely related to splines (with one knot/kernel per data point)
 - Sparse variants offer promising perspectives
 - Deep ReLU neural nets are high-dimensional piecewise-linear splines
 - Functional optimization for the streamlining of neuronal architectures
 - Free-form activations with TV-regularization ⇒ Deep splines

ACKNOWLEDGMENTS

Many thanks to (former) members of EPFL's Biomedical Imaging Group

- Dr. Julien Fageot
- Shayan Aziznejad
- Thomas Debarre
- Dr. Mike McCann
- Dr. Harshit Gupta
- Prof. Kyong Jin
- Dr. Fangshu Yang
- Dr. Emrah Bostan
- Prof. Ulugbek Kamilov
- **.**...

and collaborators ...

- Prof. Demetri Psaltis
- Prof. Marco Stampanoni
- Prof. Carlos-Oscar Sorzano
- Prof Jianwei Ma

·

FunLearn

45

References

- Sparse adaptive splines
 - M. Unser, J. Fageot, J.P. Ward, "Splines Are Universal Solutions of Linear Inverse Problems with Generalized-TV Regularization," SIAM Review, vol. 59, No. 4, pp. 769-793, 2017.
 - T. Debarre, Q. Denoyelle, M. Unser, J. Fageot, "Sparsest Continuous Piecewise-Linear Representation of Data," arXiv:2003.10112, 2020.
- Representer theorems
 - M. Unser, "A Unifying Representer Theorem for Inverse Problems and Machine Learning," Foundations of Computational Mathematics, vol. 21, pp. 941–960, 2021.
 - S. Aziznejad, M. Unser, "Multi-Kernel Regression with Sparsity Constraints," SIAM Journal on Mathematics of Data Science, vol. 3, no. 1, pp. 201-224, 2021.
- Neural networks
- K.H. Jin, M.T. McCann, E. Froustey, M. Unser, "Deep Convolutional Neural Network for Inverse Problems in Imaging," IEEE Trans. Image Processing, vol. 26, no. 9, pp. 4509-4522, Sep. 2017.
- H. Gupta, K.H. Jin, H.Q. Nguyen, M.T. McCann, M. Unser, "CNN-Based Projected Gradient Descent for Consistent CT Image Reconstruction," *IEEE Trans. Medical Imaging*, vol. 37, no. 6, pp. 1440-1453, 2018.
- M. Unser, "A Representer Theorem for Deep Neural Networks," J. Machine Learning Research, vol. 20, no. 110, pp. 1-30, Jul. 2019.

Preprints and demos: <u>http://bigwww.epfl.ch/</u>

Sketch of proof

$$\min_{(\mathbf{U}_{\ell}),(\boldsymbol{\sigma}_{n,\ell}\in \mathrm{BV}^{(2)}(\mathbb{R}))} \left(\sum_{m=1}^{M} E(\boldsymbol{y}_{m},\mathbf{f}(\boldsymbol{x}_{m})) + \mu \sum_{\ell=1}^{N} R_{\ell}(\mathbf{U}_{\ell}) + \lambda \sum_{\ell=1}^{L} \sum_{n=1}^{N_{\ell}} \mathrm{TV}^{(2)}(\boldsymbol{\sigma}_{n,\ell}) \right)$$

Optimal solution $\tilde{\mathbf{f}} = \tilde{\boldsymbol{\sigma}}_L \circ \tilde{\boldsymbol{\ell}}_L \circ \tilde{\boldsymbol{\sigma}}_{L-1} \circ \cdots \circ \tilde{\boldsymbol{\ell}}_2 \circ \tilde{\boldsymbol{\sigma}}_1 \circ \tilde{\boldsymbol{\ell}}_1$ with optimized weights $\tilde{\mathbf{U}}_{\boldsymbol{\ell}}$ and neuronal activations $\tilde{\boldsymbol{\sigma}}_{n,\boldsymbol{\ell}}$.

Apply "optimal" network $ilde{\mathbf{f}}$ to each data point x_m :

- Initialization (input): $\tilde{\boldsymbol{y}}_{m,0} = \boldsymbol{x}_m$.
- For $\ell = 1, \dots, L$ $\boldsymbol{z}_{m,\ell} = (z_{1,m,\ell}, \dots, z_{N_{\ell},m,\ell}) = \tilde{\mathbf{U}}_{\ell} \, \tilde{\boldsymbol{y}}_{m,\ell-1}$ $\tilde{\boldsymbol{y}}_{m,\ell} = (\tilde{y}_{1,m,\ell}, \dots, \tilde{y}_{N_{\ell},m,\ell}) \in \mathbb{R}^{N_{\ell}}$ with $\tilde{y}_{n,m,\ell} = \tilde{\sigma}_{n,\ell}(z_{n,m,\ell}) \quad n = 1, \dots, N_{\ell}.$ $\Rightarrow \quad \tilde{\mathbf{f}}(\boldsymbol{x}_m) = \tilde{\boldsymbol{y}}_{m,L}$

This fixes two terms of minimal criterion: $\sum_{m=1}^{M} E(\boldsymbol{y}_m, \tilde{\boldsymbol{y}}_{m,L})$ and $\sum_{\ell=1}^{L} R_{\ell}(\tilde{\mathbf{U}}_{\ell})$.

 $\tilde{\mathbf{f}}$ achieves global optimum

$$\Leftrightarrow \quad \tilde{\sigma}_{n,\ell} = \arg \min_{f \in \mathrm{BV}^{(2)}(\mathbb{R})} \|\mathrm{D}^2 f\|_{\mathcal{M}} \quad \text{s.t.} \quad f(z_{n,m,\ell}) = \tilde{y}_{n,m,\ell}, \ m = 1, \dots, M$$