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Variational formulation of inverse problems in imaging

m Linear forward model

Integral operator

Problem: recover s from noisy measurements y

m Regularization of ill-posed inverse problem

Sicc = arg min [y — Hs|3 + A|Ls|p . p=1,2
—— N —

data consistency  regularization



Supervised learning as a (linear) inverse problem
but an infinite-dimensional one ...

Given the data points (., ym) € RY*L find f : RY = R st f(xp,) Rymform=1,...,.M

m Introduce smoothness or regularization constraint (Poggio-Girosi 1990)

R(f) = |fll3 = ILfI3, :/ |Lf(x)|*da: regularization functional
RN

M
mingey R(f) subject to Z Ym — f(@m)]? < 02

m=1

m Regularized least-squares fit (theory of RKHS)

M
frxcus = arg min <Z [Ym — f(@m)|* + AR(f)) with - R(f) = || f[3 = kernel estimator
X m=1

(Wahba 1990; Schélkopf 2001)

Can your learnthe map y = f(x) ?
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R(f) = ID*fllm R(f) = [IDfI3, R(f)=Dflr.
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General notion of Banach space

Normed space: vector space X equipped with a norm || - || »

Convergent sequence of functions (¢;) in X'
11{11 0 =) e, lim ”90 . ‘Pz’”)( -0 Stefan Banach (1892-1945)

Definition
A Banach space is a complete normed space X;

that is, such that lim; ¢, = ¢ € X for any convergent sequence (¢;) in X.

m Generality of the concept

= Linear space of vectors u = (uy,...,uy) € RY
= Linear space of functions u : R* — R = Linear space of vector-valued functions u = (uy,...,uy) : R? — RV
= Space of linear functional v : X — R = Linear space £(X,)) of bounded operators U : X — )

Dual of a Banach space

Dual of the Banach space (X, || - || x):

X’ = space of linear functionals g : f — (g, f) £ g(f) € R that are continuous on X

X’ is a Banach space equipped with the dual norm: lgllxr = sup ((g, f>>
reavioy \Ifllx
. ) = lglla > [{g, /)] f#0
m Generic duality bound A=l

Forany f € X,g € X" [{g, /)l < llgllx[lfllx

m Duals of L,, spaces: (Lp(Rd))/ =Ly (R)  with +4L=1 for p € (1, 00)

Hélder inequality: | (f, ¢)| < /Rd [f(r)e(r) dr < |[fllz,lIelL,



Riesz conjugate for Hilbert spaces

m Duality bound for Hilbert spaces (equivalent to Cauchy-Schwarz inequality)

Forall (u,0) € H x H': [, 0)] < [lull ol

. Frigyes Riesz (1880-1956
m Definition 9 ( )

The Riesz conjugate of u € H is the unique element u* € H’ such that

(u, u*) = (u,u)yp = llullf; = [lulla [[u*]l2 (sharp duality bound)
m Properties +
= Norm preservation:  ||ully = ||u* |2/ (isometry)

s u*=R7Yu} (inverse Riesz map)
= Invertibility:  w = (u*)* = R{u*} (H') = H (reflexivity)

» Linearity: (w1 +u2)* = uf + ub

Generalization: Duality mapping

Definition
Let (X, X’) be a dual pair of Banach spaces. Then, the elements f* € X" and f € X
form a conjugate pair if

o || f*llar = |Ifllx (norm preservation), and

Arne Beurling (1905-1986)
o (f* flarxx =l |lfllx (sharp duality bound).

For any given f € X, the set of admissible conjugates defines the duality mapping

J) ={fr e X \f = fllxand (f*, flarcx = 1 1 f 12},

which is a non-empty subset of X’. Whenever the duality mapping is single-valued
(for instance, when X is strictly convex), one also defines the duality operator
Jx : X = X', which is such that f* = Jx(f).

(Beurling-Livingston, 1962)



Properties of duality mapping

Theorem
Let (X, X') be a dual pair of Banach spaces. Then, the following holds:

1. Every f € X admits at least one conjugate f* € X".
2. Forevery f € X, the set J(f) is convex and weak-x closed in X”.

3. The duality mapping is single-valued if X’ is strictly convex; the latter condition
is also necessary if X is reflexive.

X is strictly convex if, for all f1, fo € X suchthat || f1||x = ||f2]|lx =1
and fi # fa, one has |[Af; + (1 — \) fa||lx < 1forany A € (0,1).

X is reflexive if X' = X.

Mother of all representer theorems

arg min E(y,v(f) +¢ (I fllx)

Lausanne, Christmas 2018

Mathematical assumptions:
e (X, X’)is adual pair of Banach spaces.
e N, = span{v, }*_, C X with the v, being linearly independent.

e v: X = RM: fs ((1, f),..., (v, f)) is the linear measurement operator
(it is weak* continuous on X’ because v, . ..,vy € X).

o E:RM x RM —; R is a strictly-convex loss functional.

e ¢ : R™ — RT is some arbitrary strictly-increasing convex function.




General representer theorem

Theorem
For any fixed y € RM the solution set of the generic optimization problem

§ = arg min E(y,v(f)) +4 (I fllx)

is non-empty, convex and weak*-compact, and all solutions fo € S C X’ are 5
(X', X)-conjugate of a common vy € NV,, = span{v,,, }}_, Cc x.
dualiy
The parametric form of the solution depends on the space type. map
;lVO E Ny

1) If X’ is a Hilbert space and 1 is strictly convex, then the solution is
unique and it admits a linear expansion with coefficients (a,,) € R

M
fO = Z AmPm,
m=1

where ¢,,, = Jx{vm,} € X’ with J» the Riesz map X — A”.

(Unser, FOCM 2021)

General representer theorem (Cont’d)

2) If X' is a strictly convex Banach space and 1) is strictly convex, then the

solution is unique and it admits the representation with (a,,) € RM
(Unser, FOCM 2021)

M
fO:JX{Zame}a fo

m=1
where J y is the (nonlinear) duality operator X — X”. dualiy
map
31/0 S Ny

3) Otherwise, when X’ is not strictly convex, the solution set S is the
convex hull of its extreme points, which can all be expressed as

Ko
Jo= ZCkek, Jo
k=1
for some Ky < M, ¢1,...,ck, € R, where ey, ..., ex, € X’ are some

extreme points of the unit ball By, = {z € X : ||z||x < 1}.

(Boyer-Chambolle-De Castro-Duval-De Gournay-Weiss, arXiv:1806.09810, 2019)



Extreme points

m Definition

Let S be a convex set. Then, the point = € S is extreme
if it cannot be expressed as a (non-trivial) convex combination of any other points in S.

m Extreme points of unit ball in ¢,(Z)

n Uoo(Z): ex[n] ==+1
n U1(Z): ey =20 —ng] (Kroneckerimpulse)
= Lp(Z)withp € (1,00) :  ex =u/||ule, forany u € £,(Z)

Definition of strictly convexity of a Banach space: all boundary points are extreme !l
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1. Learning in reproducing kernel Hilbert space

Definition

A Hilbert space # of functions on R? is called a reproducing kernel Hilbert space (RKHS)
if 6(- —x0) € H' forany ¢y € R%. The corresponding unique Hilbert conjugate /.(-, xo) =
(6(- — x0))" € H when indexed by x is called the reproducing kernel of H.

m Learning problem

Given the data (ar:m,ym);:[:1 with x,,, € R%, find the function fp : R? = R s.t.
M
m=1

s E, :R xR — R (strictly convex)

= 1) : R — RT (strictly increasing and convex)

Learning in RKHS (Cont’d)

m Special case of general representer theorem
s X =H, X' =H"=%H (all Hilbert spaces are reflexive)

= Uy =0(-—x,) (Dirac sampling functionals)

M Iy
= Additive loss: E(y,2) = > Enm (Ym, 2m) specific of ML
m=1

m Key observation

Reproducing kernel = Schwartz kernel of Riesz map

R=Jy :H =H:v— | h(yvy)dy = on=Ju{0(—zn)}="h(z.)
]Rd

m Implied form of unique solution = linear kernel expansion

S
S

fo(z) = U pm (T) = Z amh(z, Tm) (Scholkopf representer theorem, 2001)



2. Regularization with a LS| operator = kernel methods of ML
m Quadratic Tikhonov regularization functional
RO = I = L7, = [ | ILf@)d (Pogglo-Girost 1990)
RN

L: Linear shift-invariant (LSI), invertible regularization operator

f(w): frequency response of L Hilbertian isometries
. Lfl* L71
m Key observation H — LyRYH —
— —
Reproducing kernel = Impulse response of L~'L~1* = (L*L)~! L* L
* _ _ 1 1 d
V' =Ju vy =hxv where h=F {‘E(w”Q}eLl(R)
m Parametric form of solution = expansion of kernels centered on data points
M M /
fo@) = amIu{6(- — @)} (@) = > amh(@ — x,,)
m=1 m=1
3. Smoothing splines
M 2
: df(z)
_ a2 :
fo=arg iy <m§_:1 |f(Tm) — ym|™ + A/R ‘ 1 dx) (Schoenberg 1964; de Boor 1966)

m Smoothness regularization (spline semi-norm)

R(f)=|Df||7, with D=L; Null space : A = {p(x) = ag : ap € R}

m Direct-sum RKHS topology: Lo p(R) = Hp & Np

X Data points
—Smoothing splines

D has a unique inverse only if one factors out the null space

1
Impulse response of (D*D)~':  h(z) = F~* {W} (z) = 1|z|

m Solution = linear spline with knots at z4, ...,z

M
fol@) =ao+ Y am|x — n|

m=1

0.8 1

20



4. Sparse kernel expansions
m Sparsity-promoting regularization functional
R(f) = LTS < |Lf()|dz

L: Linear shift-invariant (LSI), invertible regularization operator

f(w): frequency response of L

Banach isometry

L—l
L1(R%) — L1 (RY)
L

Z

Theoretical roadblock: The general representer theorem does
no predual space X such that L, (R?) = X”.

not apply because there exists

The optimization problem is ill-defined and does not admit a solution !

Proper continuous counterpart of /1-norm

= Dual definition of £1-norm (in finite dimensions only)

N
£l =S 1ful = s (fou)
n=1

WERN: [[ufl o<1

Co(RY) = (SR, [ [l2..) € Loo(RY)

Space of bounded Radon measures on R?
M(R?Y) = (Co(RY) = {f € S'(RY) : [|fl|m = sup
PES(RY): |lplloo <1
Superset of L;(RY)
Ve LiRY: fllm=1fl, = Li(RY) C M(RY)

Johann Radon (1887-1956)

Space Cy(R?) of functions on R that are continuous, bounded, and decaying at infinity

(fsp) < +o0}

= Extreme points of unit ball in M(R%): e;, = £0(- — 7) with 75, € R?

21
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4. Sparse kernel expansions (2nd attempt)

m Sparsity-promoting regularization functional Banach isometry

R(f) = [[Lfllm = i (Lf. o) Lt
PECH(RY): ||l Lo <1 d d
o . - ME) = MR
L: Linear shift-invariant (LSI), invertible regularization operator L

E(w): frequency response of L
Extreme points: e, = L=5(- — 74)}

Impulse response of L=1: h = F~! {/L\;w)} € Li(RY)

(Aziznejad-U., SIAM 2021)
Corollary (3rd case of representer theorem)

M
The extreme points fo of S = arg min (Z Ep (Y, [ (@) + )\HLfHM> can all be expressed as

fEMLRY) \ ~—

folz) = ZU arph(x — T)

Ko
for some Ko < M, 71,...,7x, € R and a = (aj) € R¥°. Moreover, |Lfo|lm =Y _ lak| = [lalle, -
fo=il

23

5. Sparse adaptive spline

M
_ : 2 2 Mammen 1997; Unser 2017)
=a min T m|” + A||D (Mamme ,
fo rngM]lDz(R) ( E |f(@m) = Yml | f||M>

m=1

m Sparsity-promoting regularization

R(f) = |D*f|l i Null space : Np: = {p(z) = by + b1z : by, by € R}

Solution with fewest knots |

m Direct-sum Banach topology: Mp:(R) = Up2 & Np:

D? has a unique invertise only if one factors out the null space

Impulse response of D=2 (two-fold integrator):  h(z) = (z)4 = ReLU(x)

0 0.2 0.4 0.6 0.8 1

m Solution = linear spline with (few) adaptive knots at 74, . . ., 7k,
(Debarre arXiv 2020)

Ko

fo(z) = bo + brz + Zak(x — Tk)+
k=1

24



Comparison of linear interpolators

arg min Df(z)[*dz st Tm) = Ym, m=1,..., M
e min [ IDf@) flem) =y

(de Boor 1966)

arg  min  |[D*fllm st f(zm) =Ym, m=1,.... M
FEBVA(R)

(Unser JMLR 2019; Lemma 2)

6. Lipschitz splines

FeEWL(R)

M
fo=arg min ( If(wm)—ym|2+AIIDf|ILoo>
=1

m Lipschitz boundedness constraint

R(f)=|Dfllr.. Null space : Np = {p(z) = by : by € R}

Extreme points of unit ball in Lo (R): e such that ej(x) = £1

m Direct-sum Banach topology: W1 (R) = Up & Np

D has a unique inverse only if one factors out the null space

up = D7 ep(z) = / e (t)dt + C : linear spline with binary slope (£1)

— 00 0 0.2 0.4 0.6

m Solution = linear spline with with many oscillations (non-unique)

Ko
fo(x) =bo+ Y arug(x) (Aziznejad et al., ArXiv 2022)
k=1

25
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Background
Continuous piecewise linear (CPWL) functions / splines
Variational formulation of shallow nets

Representer theorem for deep neural networks
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Deep neural networks and splines
ReLU(z;b) = (x — b) 4

m Preferred choice of activation function: ReLU i

m RelLU works nicely with dropout / ¢1-regularization (Glorot ICAIS 2011)
m Networks with hidden RelLU are easier to train

= State-of-the-art performance (LeCun-Bengio-Hinton Nature 2015)

m Deep nets as Continuous PieceWise-Linear maps

m RelLU = CPWL (Montufar NIPS 2014)

m CPWL = Deep ReLU network (Strang SIAM News 2018)

m Deep RelLU nets = hierarchical splines

m RelU is a piecewise-linear spline (Poggio-Rosasco 2015)

29

Feedforward deep neural network

m Layers: ¢{=1,...,L

layers

» Deep structure descriptor: (Ng, N1, -+, Np)

= Neuron or node index: (n,¢), n=1,---, Ny
= Activation function: ¢ : R - R (RelLU) O
O
= Linear step: RVe-1 — RN
(n-10 O

frixe f(x) =W+ Dby

. (n, )
= Nonlinear step: RVt — RVe

o @ oy(x) = (0(x1),...,0(zN,))

Zne = (WE Ze1 +bne)

nodes

Learned

_— —
= —

facep(@) = (L0 fr 00, 100030 fy001 0 f,) ()

30



Continuous-PieceWise Linear (CPWL) functions

\ 4

.’ Tk Tk+1

m 1D: Non-uniform spline de degree 1
Partition: R = Uf:o Py with Py = [T, Tk41), To = —00 < 71 < +++ < T < Tk41 = +00.
The function fpiine : R — R is a piecewise-linear spline with knots 7, ..., 7x if

m (Z) forx € Py, : fspline(ac) = fk(l‘) 2 axx + by, with (ak,bk) ceR? k= 0,...,.K
= (2%) fspline is continuous R — R
K

= fopline(¥) = bo + b1z + Y ax(w — 7)1 with by, by € R, (@) € RX.
k=1

CPWL functions in high dimensions

m Multidimensional generalization y
Partition of domain into a finite number of non-overlapping convex polytopes; i.e.,
RN = Ui, Py with u(Py, N Py,) = 0forall ky # ky
The function fepwr, : RY — R is continuous piecewise-linear with partition P;, ..., Px
w (i) forz € Py : fopwi(®) = fu(z) = alz + by withay, e RN by e R,k =1,..., K

= (41) fopwr is continuous RY — R

The vector-valued function fcpwr, = (f1,- .., far) : RY — RM isa CPWL
if each component function f,,, : RN — R is CPWL.

31
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Algebra of CPWL functions

e any linear combination of (vector-valued) CPWL functions RY — RY' is CPWL, and,

e the composition f5 o f; of any two CPWL functions with compatible domain and range—i.e.,
f, : RV — RN2 and f; : RYo — RN1—is CPWL RMo — RNz,

Sketch of proof. The continuity property is preserved through composition.
The composition of two affine transforms is an affine transform, including the
scenari where the domain is partitioned.

e The max (resp. min) pooling of two (or more) CPWL functions is CPWL.

Implication for deep ReLU neural networks

fieep(x) = (00 froop_10---0030 fyo0i0fy)(x)

m Each scalar neuron activation, o, ¢(z) = ReLU(z), is CPWL.
m Each layer function o o f,(x) = (Wex + by) is CPWL
m The whole feedforward network f e, : RV0 — RVZ is CPWL

m This holds true as well for deep architectures that involve Max pooling
for dimension reduction

= The CPWL also remains valid for more complicated neuronal responses
as long as they are CPWL; that is, linear splines.

33
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Limit behaviour of univariate shallow RelLU neural nets

K neurons
m Shallow univariate ReLU neural network with skip connection
K Ko
fo(x) =co+crz+ ka(wkx —br)+ =co+ oz + Z ag(z — )+
k=1 k=1

m Standard training with weight decay

¢

M K
. 2 A
(NN-1) :  arg 0_(m1nb o Z [ym — folzm)|” + 5 Z [vg]? + |wg|?
IR | k=1

Theorem
Forany K > Ky (with Ko < M), the solution of (DNN-1) is achieved by the sparse adaptive spline:

FEBV®) (R)

M
fspline =arg min < |ym - f(xm)|2 + )‘|D2f”M> .
1

Arguments for the proof: (Savarese 2019; Parhi-Nowak 2020)
m Scale invariance of ReLU architecture: Forany v > 0, the map (vg, wg) —

(yvg, wi /) does not affect fq.

m At the optimum of (NN-1), |wy| = |vg]|, for k =1,..., K and
TV®(fo) = S, lar| with ay = vg|wy|.

35

The Radon transform and the FBP algorithm

_ d. ¢ T _
Unit sphere: S ' = {¢€ e R?: ||¢]| =1} ‘ Hyperplane Py, = {w €RY: & 'w = fo}

m Radon transform of f € L;(R9)

RO = [ 60— o)f (@), () eRx 5!

m Reconstruction from g(¢, &) = R{f}(t, €): the Filtered BackProjection algorithm
f=R"Kraa{g}
s K,.q: “radial” filtering in Radon space along the variable .
Frequency response: I?rad(w) o Jw|¢t

= R*: backprojection operator (the adjoint of R)

36



Limit behaviour of multivariate 2-layer ReLU neural nets

K neurons

m Shallow ReLU neural network R¢ — R with skip connection

K Ko
fo(®) =co+clz+ ka(wlw —bk)+ =co+ecjz+ Zak(élw —Th)+
k=1 k=1

m Standard training with weight decay on v = (vg) and W = [w; ... wk]
M

K
2 A
NN-d) : ar min m — felxm)| + = ka—l— wkz
() o min ) 3 o= Jo(m)l” 5 3 Il + o]
Theorem

Forany K > K (with Ky < M), the solution of (NN-d) is achieved by the sparse ridge spline:

fridge = ar,

M
(Z Y — f(mm)|2 + )‘|KradRAf||M(R><Sd—l)) .
m=1

g min
fEMag (RY)

Delicate point: Proper delineation of the native space M, (R?) (Ongie et al. 2020; Parhi-Nowak 2021)

B Mgaq(R x S%1): space of bounded Radon-compatible measures
MRad C Sﬁad = KradR(Sl(Rd))

B M, (R?) = Banach space that is isometrically isomorphic to Mgaq X {co + ¢] x}

= Regularization operator Ag = K;aaRA : Ma, (RY) — Mgaq
37

Refinement: free-form activation functions

m Layers: ¢{=1,...,L

layers

» Deep structure descriptor: (Ng, N1, -+, Np)
= Neuron or node index: (n,¢), n=1,---, Ny

= Activation function: ¢ : R - R (RelLU) O
O

= Linear step: RVe-1 — RN

(n—1,¢) O

frixe f(x) =W+ Dby

neuron (n’ Z)

= Nonlinear step: RV¢ — RV

op:x— op(x) = (U‘,L[(ftl), .. .,O’N[,e(l’]vf))

Zn,e = On,e(WE Ze—1 + bne)

nodes

fiacep(x) = (00 froop_10---0030 fyo0i0 f)(x)

NN L7

Joint learning / training ?

38



Constraining activation functions

m Regularization functional
= Should not penalize simple solutions (e.g., identity or linear scaling)
= Should impose diffentiability (for DNN to be trainable via backpropagation)

= Should favor simplest CPWL solutions; i.e., with “sparse 2nd derivatives”

m Second total-variationof o : R — R

TV® (o) £ |D%0|am = supycsim): o<1 (D20, )

m Native space for (M(R), D?)
BVA(R) = {f:R = R:|Df] < oo}

Representer theorem for deep neural networks

Theorem (TV(Q)—optimality of deep spline networks) (Unser, JMLR 2019)
= neural network f : RVo — RNz with deep structure (No, Ny, ..., Np)
xz—f(x)=(ocpo0lLo0o_10--0ly0004;)(x)

= normalized linear transformations €, : RVe-1 — RN¢, ¢ — U, with weights
Uy =[uy -+ upn,7 € RVNeXNew1 sych that ||y, of| = 1

= free-form activations o = (01¢,...,0n,¢) : RVt = RN with 01 ,...,0n, 0 € BV®(R)
Given a series data points (€, y,,) m = 1,..., M, we then define the training problem
M N L N
arg min E(y,,,f(xm)) +p Re(Ug) + A TV(Z)(UW;) (1)
(U0), (0. EBVD (R)) (WLX_:I wn ) ; ; ;

= E: RN x RVt — R*: arbitrary convex error function

» Ry : RNexNeew 5 R+ convex cost

If solution of (1) exists, then it is achieved by a deep spline network with activations of the form

Ky
On () = b1,ne + ban ez + Z Ay, e(T — Thyn )+
k=1
with adaptive parameters K,y < M — 2,71 0, .-+, TK, ;ne € R,and by 0,02 00, Q1005 - -5 0K, yne € R

39
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Outcome of representer theorem

Each neuron (fixed index (n, ¢)) is characterized by

e its number 0 < K, , of knots (ideally, much smaller than M);
e the location {7, = Tk,n_,g}f:"f of these knots (ReLU biases);

e the expansion coefficients by, ¢ = (b1,.¢,b2.n.¢) € R?,

o= (1m0, aKn0) € RE.

These parameters (including the number of knots) are data-dependent and
adjusted automatically during training.

m Link with ¢; minimization techniques

Ko

TVO{one} = D laknel = llan
k=1

1

Deep spline networks: Discussion

m Global optimality achieved with spline activations
m Justification of popular schemes / Backward compatibility

m Standard ReLU networks (K¢ =1, b, =0)

m Linear regression: A — oo = K, ;=0

m State-of-the-art Parametric ReLU networks (Kne=1)
1 ReLU + linear term (per neuron)

m Adaptive-piecewise linear (APL) networks (Kne=250r7, b,;=0)

41

ReLU(z;21) = (2 — z1)+

.

T

(Glorot ICAIS 2011)
(LeCun-Bengio-Hinton Nature 2015)

(He et al. CVPR 2015)

(Agostinelli et al. 2015)
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Deep spline networks (Cont’d)

m Key features

= Direct control of complexity (number of knots): adjustment of A

= Ability to suppress unnecessary layers

m Challenges

= Adaptive knots: more difficult optimization problem = In need of novel training algorithms

= Optimal allocation of knots
£1-minimization with knot deletion mechanism (even for single layer)

= Finding the tradeoff: more complex activations vs. deeper architectures
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CONCLUSION: Return of the spline

= Foundations of functional learning
Functional optimization in Banach spaces (enabled by representer theorem)
Hilbert spaces: the tools of classical ML
Non-convex Banach spaces: for sparsity-promoting regularization (e.g., CS)

= Splines and machine learning

Traditional kernel methods are closely related to splines
(with one knot/kernel per data point)

Sparse variants offer promising perspectives
Deep ReLU neural nets are high-dimensional piecewise-linear splines

Functional optimization for the streamlining of neuronal architectures

Free-form activations with TV-regularization = Deep splines
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Sketch of proof
M N L N
min <Z E(Ypm, f(xm)) +;LZ R¢(Uy) + /\z Z TV® ((r,ﬂ‘))
=1

(Up),(0,,c€BVR(R)) \ *—] =1 n—1
Optimal solution f= ol oZL 0F_10""" 022 00 021 with optimized weights fJg and neuronal activations 7, ¢.

Apply “optimal” network f to each data point ,,,:
e Initialization (input): g,,, o = Tm.

e For{=1,...,L

Zme = (2t -y 2Nymot) = Ut B e
Yo = Grm,s - INgme) € RN
with ?jn,m,l = &n,,k(zn,m,ﬁ) n=1,...,N,. = f(mm) = i/m,L

This fixes two terms of minimal criterion: fozl E(Ypn> Uy, ) and Zle Ry(Uy).

f achieves global optimum

& Gp0=arg min HD2fHM st f(znme) = Jnme, m=1,..., M
FEBV®)(R)
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