Bayesian Optimization with Categorical and

Continuous Variables

Dr Vu Nguyen
Machine Learning Scientist

amazon

@ @nguyentienvu ¢ vu-nguyen.org

Vu Nguyen 1




@ Bayesian optimisation and lllustration

continuqus variables i categorical variables
@ Mixed categorical-continuous optimisation»=/ (= . = = = . = )
learning rate weight decay ' optimiser type activation type
€ [1le %, 1e71] € [1e75,1e71] € {SGD,Adam, ...} € {tanh, sigmoid, ...}

e Mixed optimization in high dimensional space

e Mixed optimization in population-based AutoRL

A single training process
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Hyperparameters Optimization

@ ML algorithm’s performances depend on hyperparameters.
e Finding the best hyperparameters for the highest performance
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Traditional Hyperparameters Tuning

@ Grid Search:

o Create a list of values for each parameter.

o Consider all possible combinations of these values.

o Exhaustively evaluate the model and choose the
best parameter.

@ Random Search:

o Randomly select a parameter to evaluate.
o Select the best parameter.




Grid vs Random vs Bayesian Optimization

\Grid Search

best hyperparameter
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Random Search

Bayesian Optimization



Grid vs Random vs Bayesian Optimization
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optimum location optimum location optimum location
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Blackbox optimisation competition at NeurlPS20

@ The top 20 teams uses Bayes Opt.

Login / Sign Up Leaderboard Alternate Leaderboard Virtual Room Submit your entry

LEADERBOARD

Team Score Prize Paper GitHub

Huawei Noah's Ark Lab 93.519 $6,000 in repo

NVIDIA RAPIDS.AI 92.928 $4,000 link

AutoML.org & IOHprofiler, featuring the switching squirrel (*) 92.551 (*) epo

letBrains Research 92.509 $3,000 ink epo

Duxiaoman DI 92.212 $1,000 ink repo

Optuna Developers (Preferred Networks & CyberAgent) 91.806 $1,000 link

Ambitious Audemer 91.107

jumpshot 91.089

KAIST OslI 90.872 ink

Able Anteater 90.302

Oxford BXL 90.143

Innovatrics 90.081 ink repo

IBM Al RBFOpt 90.050

Jim Liu 89.996

https://bbochallenge-eom/leaderboard

Better call Bayes 89.846 ink repe

dannynguyen 89.706 repo

AlexLekov 89.403

ABO 89.354

a2i2team 89.237

Tiny, Shiny & Don 89.229



Black-box Optimization

@ The relationship from x to y is through the black-box.

Input x Black-box OUtpUt:y = f(x)
f(x)

looking for this maximizer
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Properties of Black-box Function

ffXERYSYER

X y = f(x2
input f(x) output

Function form is not known V=ax+b

No derivative form j—x><

Expensive to evaluate (in time and cost)

Nothing is known about the function, except a few evaluations y = f(x)
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Bayesian Optimization Overview

Refine  output y @ Make a series of evaluations xq, X5, ... X7

Bayes Opt : f(x)

input x

exploit explore
Acquisition function ¢ (x) = u(x) + Kk X (%)

@ Find the optimum using few evaluations

20 A

function belief

10 A

uncertainty

Surrogate function
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llustration of Bayes Opt (3 points)

@ Given 3 initial observations

Accuracy f(x)

{ [ (Kmax)=6

the unknown
maximizer

black-box function
(unknown)

Xmax=0.78

0.0

0.2

0.4 0.6 0.8
Learning rate X

1.0
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llustration of Bayes Opt (3 points)

@ Given 3 initial observations

where to evaluate next?

Accuracy f(x)

0.0 0.2 0.4 0.6 0.8 1.0

Learning rate X
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llustration of Bayes Opt (4 points)

Refine output y

|
Bayes Opt < Black-box
| > NS

input x

Accuracy f(x)

Suggested Experiment

0.0 0.2 0.4 0.6 0.8 1.0
Learning rate X
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llustration of Bayes Opt (5 points)

Accuracy f(x)

Suggested Experiment

0.0 0.2 0.4
Learning rate X

0.6

0.8
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Accuracy f(x)

llustration of Bayes Opt (6 points)

0.4
Learning rate X
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llustration of Bayes Opt (7 points)

Accuracy f(x)

0.0

0.4 0.6 0.8 1.0
Learning rate X
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llustration of Bayes Opt (8 points)

Hits the optimum

less samples
poor locations

Accuracy f(x)

Xmax = 0.78
f (Xmax) = 6

more samples
promising locations

Bayes Opt finds the global optimum,
using fewest evaluations.

I I
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o| Mixed categorical-continuous optimisation

e Mixed optimization in high dimensional space

e Mixed optimization in population-based AutoRL

A single training process

[
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continuous variables

oy = f( x

learning rate
€ [1le™% 1e71]

Gradient Descent

Big learning rate

Small learnin

g rate

Bayes Opt Mixed Categorical — Continuous Input

@ Tuning hyperparameters for deep neural network

categorical variables

weight decay
€ [1le % 1e71]

optimiser type
€ {SGD, Adam, ... }

X4

activation type
€ {tanh, sigmoid, ... }




Bayes Opt Mixed Categorical — Continuous Input

@ One-hot encoding:
e Red: [1,0,0] Green: [0,1,0] Blue: [0,0,1]

@ Drawbacks:
o Make the search space large.

if C =4 categories, each has V = 5 choices=> 20 extra dimensions.
@ Non-continuous and non-differentiable space

@ Challenging in optimizing mixed-type: categorical - continuous

20



Bayes Opt Mixed Categorical — Continuous Input

continuous categorical
Y = f( X1 ) X2 X3 ) X4 )
learning rate weight decay optimiser type activation type
€ [1e7 % 1e7 1] € [1le™%, 1e71] € {SGD,Adam, ...} € {tanh, sigmoid, ...}

Bayes Opt Multi-armed Bandit

21



Two settings in mixed variables optimization

1. Continuous variable is to categorical variable

2. Continuous is categorical variables



Two settings in mixed variables optimization

1. Continuous variable is to categorical variable

Kernel parameter is
to the kernel type.

dimensions for the continuous: 1 or 2 ?



Two settings in mixed variables optimization

1. Continuous variable is to categorical variable

RBF

rrrrr

00000

------

2. Continuous is categorical variables

Learning rate in DL is sharing across activation types

categorical
qij ‘
l% Cat1 Cat2 Cat3 f (x, h)
. |

continuous

continuous



Two settings in mixed variables optimization

1. Continuous variable is to categorical variable

'ﬁ Polynomial '

f1(x) f2(x) f3(x)

* |ndependent/local functions
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2. Continuous is categorical variables

IH.I.I Cat1 Cat?2 Cat3 ° G|Oba|functlon f(x; h)

continuous




Algorithm overview

Optimize Optimize continuous
categorical h x given h

VAR i I I 5 i | - Bayes Opt
Ay Ay A
Observe the feedback
y = f([x, h])
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Setting (1): continuous is

Selectx | h
by BO

Linear

=15
-30
—45

-60

=75
r—90

Observey = f([x, h])

r—105

—- =120

-15
-15 -10 -05 00 05 10

FEEDBACK

S. Gopakumar, S. Gupta, S. Rana, V. Nguyen, & S. Venkatesh. Algorithmic assurance: An active approach to algorithmic testing using BO. Neur/PS’18
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Setting (2): continuous across categories

@ Using Bayes Opt to find x in a global
space across all categories h.

@ Joint kernel for both x and h
o Additive k(x, x') + k(h, h')

o Multiplicative k(x,x") X k(h, h")
Observey = f([x, h])

o k(z,z') = (1 - VDk(x,x")k(h,h") +
Ak(x,x") + k(h, h")]

FEEDBACK

@ A can be estimated from the data.

B. Ru, A. Alvi, V. Nguyen, M. Osborne, & S. Roberts. Bayesian optimisation over multiple continuous and categorical inputs. ICML’20 29



Visualization of the Algorithm

Categorical RBF Polynomial Linear MAB
. 0.0 -800 0.0 =75 00 -60 Bayes Opt
Continuous
1 4 o0 ® & L5 ®® o0 & D & @ [ )
T | oo
- ! i
q%, :oo ® o o o o0 o000 0O0O® O o0 oooooook
S L _______________________________________________________________ : \
Concentrate on Polynomial
1 _e9¢ , L e , , , | with higher (expected) value.
0 5 10 15 20 25 30 35

Iteration
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o| Mixed optimization in high dimensional space

e Mixed optimization in population-based AutoRL

A single training process

>

o o e -
Agent contmue . hyperparameters (x*)
x suggested by BO

copy network \weights from
high performlng agent

Q network weights (8%)
low perf

Parallel I O StDp i O ﬂ O E] high performance
Agent
|

31



Mixed optimization with 200 dimensions 7

@ High dimension causes problem for optimization.

e Statistical challenge: the search space grows exponentially

e Computational challenge: global optimizers fail to return an optimum
within limited time and resource

32



Local Trust Optimization

@ Build multiple trust regions T - .
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@ Perform local optimization in each
trust region

@ The local region is narrower for the
local optimizer to be successful
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Eriksson et al. "Scalable global optimization via local Bayesian optimization." Neur/PS’19 33



Local Trust Optimization

@ lteratively
@ expand the trust region for exploration if successes
@ shrink the trust region for exploitation if failures
) te\rminate and randomly jump to another region if local search is exhauste}d

Y

N
\\ .

v\\

\ BN~ : True Model
. AUTTTALARAN | 77 unction
'] Trust Region Update e

N //@

|\|| ||f ) AN\ | \
/'I .,f \H.\ il CLLA NN \
1 Trust region * Global optima ® [Evaluated points [ Jest point (center)

Given limited observations, the GP estimation is more accurate within a local region
34



CASMOPOLITAN

e Extending local trust idea for mixed categorical-continuous variables

o Separate trust regions: categorical and continuous, defined from the best

seen location -
[1,0.0] Q 0.8
[0,0,1] 0.6
[0,0,0] . [2,0,1] 04
& (2,0,0] ®
[1.1.1] 0.0
10.1,1] -04
[041|Ol @ [2.1'11 —0,6
13,101 —0.8
. -0.5 0.0 0.5

o After alocal search is exhausted, a new trust region is selected using the UCB

exploit promising region

b = argmax igi (h; D} _y) + /Biogi (b; D}_y)

explore region with high uncertainty

X. Wan, V. Nguyen, H. Ha, B. Ru, C. Lu, and M. Osborne. "Think Global and Act Local: Bayes Opt over High-Dimensional Categorical and Mixed Search Spaces." ICML’21 35



Step 1: Initialisation

[1,0,0] .

[1.1.1]
[133]
_ 01,1
[0,1.0] . [2,1}1]
[lg)]
[1.0,0]
[0,0,0} :
(1.1.0]
[0,1,01

Step 2: Acquisition optimisation

[2,1,0]

llustration of Updating Trust Region Center

At unseen nodes:

(i) Predict the expected function

value and uncertainty
(ii) Calculate acq func value

Exploit/explore to select the
highest value node to query
the black-box

[1.0,0] i a(h) = 0.05
AN
, 1
[0,0,01 o1
L il
[2,0,0] vy
[1.1.1]
(1,1,0] Starting node
.a:(h) [?loly a(h) =0.1
(0.1.01 . (21.1]
[2,1,0] '
. Next obj. func. query
[1,0,1]
{001
. (2,0.1]
[2,0,0]
(1,11 .
Update trust region center
Rebuild the local trust region
[2,1.1]
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llustration of the algorithm in the mixed space

e Iteratively expand, shrink and restart the local search

@ Natural extension to handle parallelism

/

Step 1: Initialisation

1011
1,001
10,01}
[o.0.0) . 2,0.1]
‘ (2,000 .
[SRES
11,01
CXBY
o401 131.1)
2101

\

Step 3b (Successive successes)
shift trust region centre and/or expand L
for both cont. and cat variables

Step 3a (Successive failures)
shrink L for both cont. and cat. variables

110,01

1100

[1,0.1]

-0.2
-0.4
-0.6

-0.8

08
0.6
0.4
0.2

0.0

-0.5 0.0 0.5 /

\ [2,10]

current location

a) Conditional on categorical inputs, update
the continuous variables for 1 step
[1.0.1]
11,0.0] 08
{0,0,1} 0.6
[0,0,0 L ] ko1l 04
[3,0,0] 0.2
i 11111 0.0
. -0.2
' 101,13 ﬁ
(0.3.51 @ 2111 =04
=0.6

-0.8

Step 2: Acquisition optimisation

b) Conditional on continuous inputs, update the

[1.0.0]

categorical variables for 1 step

08
0.6
0.4 1
0.2

0.0 1

c) Repeat a) and b) until convergence for
the next objective function query

11,0,0]

[1.0.1]

\

-05 0.0 0.5 /

@ https://github.com/xingchenwan/Casmopolitan
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o| Mixed optimization in population-based AutoRL

A single training process

[
Parallel O 77777 O _
Agent D O continue : . hyperparameters (x*)
1 - - i

i - x suggested by BO

copy networkiweights from
low perf high performing agent

Parallel D O b D O D Q [] high performance
Agent i e
> LSl )

Q network weights (%)
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Population Based Training (PBT

46v2 [cs.LG] 28 Nov 2017

Population Based Training of Neural Networks

Max Jaderberg Valentin Dalibard Simon Osindero Wojciech M. Czarnecki
Jeff Donahue Ali Razavi Oriol Vinyals Tim Green Iain Dunning

Karen Simonyan  Chrisantha Fernando Koray Kavukcuoglu
DeepMind, London, UK

Abstract

Neural networks dominate the modern machine learning landscape, but their training and
success still suffer from sensitivity to empirical choices of hyperparameters such as model
architecture, loss function, and optimisation algorithm. In this work we present Population
Based Training (PBT), a simple asynchronous optimisation algorithm which effectively
utilises a fixed computational budget to jointly optimise a population of models and their
hyperparameters to maximise performance. Importantly, PBT discovers a schedule of hy-
perparameter settings rather than following the generally sub-optimal strategy of trying to
find a single fixed set to use for the whole course of training. With just a small mod-
ification to a typical distributed hyperparameter training framework, our method allows
robust and reliable training of models. We demonstrate the effectiveness of PBT on deep
reinforcement learning problems, showing faster wall-clock convergence and higher final
performance of agents by optimising over a suite of hyperparameters. In addition, we show
the same method can be applied to supervised learning for machine translation, where PBT
is used to maximise the BLEU score directly, and also to training of Generative Adversarial
Networks to maximise the Inception score of generated images. In all cases PBT results in
the automatic discovery of hyperparameter schedules and model selection which results in
stable training and better final performance.

Agent 1 (CPU 1)

(Neural network 1) Hyperparameters

Agent 2 (CPU 2)
(Neural network 2)

Agent 3 (CPU 3)
(Neural network 3)

Parallel agents
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Population Based Training (PBT)

each agent receives a (different)
trained for a hyperparameter to train

few iterations

Performance —
—  — — —

Hyperparameters O O O O

Model D ..... S D . U . D
poor-performing agents

— —" — — will be terminated

reralel agents D i D R D e CD)
%I will continue
D ______ T D ______ S U ...... S D

Deep learning training process

»

agents
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Population Based Training

Terminates poor-performing agents and restarts by:
e Copies a network weight from the agent.
* Generate a new hyperparameter by randomly perturb from the

At the end of this single training process, we obtain the “well-trained” model.

Performance

Model U AAAAAAAAAAAAA D AAAAAAAAAAAAA U ................ D
9. ©0. 0. 0
D ..... LR D ..... F— D ..... L D
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Two Key Advantages of PBT

@ Learning a schedule of hyperparameters, such as selecting large
learning rate at the beginning and smaller at the later stage.

e Existing HPO: a single set of hyperparameters are fixed during training.
e PBT: perfectly adapts the hyperparameters.

e Time efficiency:
e Existing HPO: repeatedly evaluate the black-box with different hypers.
@ PBT: uses a single training run.

42



Population Based Bandit (PB2)

@ PB2 is an extension of Population Based Training (PBT).

e The hyperparameters update is controlled by time-varying
Gaussian process bandit optimization.

T T
max |[Fp(xr) — Fi(x1)] maxz Fi(xy) — Fy—1(x4—1) = mafot(a:t) = mIHZTt(It)
t=1 t=1

J. Parker-Holder, V. Nguyen, and S. Roberts. "Provably efficient online hyperparameter optimization with population-based bandits." Neur/PS’20
43



Population Based Bandit (PB2)

@ PB2 is deployed in Ray Tune library (18k users).

e Import PB2 from Ray and try in a few line of codes.

. ray—project/ ray Public ® Watch ~ 419 W Unstar = 18k % Fork | 3k

<> Code ® lIssues 17k IV Pull requests 287 ® Actions (M) Projects 0 wiki

¥ master ~ | ray/ python/ ray / tune / examples / pb2_ppo_example.py /<> Jump to ~ Go to file

l& richardliaw [tune] refactor and add examples (#11931) X Latest commit 8b3£79¢ on 15 Nov 2020 D) History

A 4 contributors @ * ‘ &

144 lines {126 sloc) 5.28 KB Raw Blame ;l LQ V4 u

1 import os

2 impert random
import argparse

4 import pandas as pd

5 from datetime import datetime

~ @

from ray.tune import run, sample_from
8 from ray.tune.schedulers import PopulationBasedTraining

from ray.tune.schedulers.pb2 import PB2

J. Parker-Holder, V. Nguyen, and S. Roberts. "Provably efficient online hyperparameter optimization with population-based bandits." Neur/PS’20
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PB2-Mix

@ PB2 is only applicable for continuous variables.
e PB2-Mix extends PB2 to handle mixed categ-cont variables

Observey = f([x, h])

Observey = f([x, h])
FEEDBACK

Existing works PB2-Mix

FEEDBACK

J. Parker-Holder, V. Nguyen, S. Desai, and S. Roberts. "Tuning Mixed Input Hyperparameters on the Fly for Efficient Population Based AutoRL." NeurlPS5'21
45



Time-varying Parallel Extension of MAB and BO

y=FU%hD F gk

@ Propose Time-varying and Parallel MAB to select categorical variables
e Time-varying parallel BO has been available in PB2

J. Parker-Holder, V. Nguyen, S. Desai, and S. Roberts. "Tuning Mixed Input Hyperparameters on the Fly for Efficient Population Based AutoRL." NeurlPS'21 46



TV.EXP3.M

e Time-varying and Parallel TV.EXP3.M to select categorical variable

@ EXP3 is a popular algorithm in multi-armed bandits
e EXP3.M is the Parallel extension for EXP3
e Time-varying extension for EXP3.M

Algorithm 5 TV.EXP3.M algorithm

Input: v =/ C(‘el:’(lc; é?r), a= %:C #categorical choice, T #max iteration, B #multiple play

1: Initw, = 1,Ye=1...C and denote n = (5 — &)=

C/1l—vy
2: for t=1toT do < i
3. if arg max,ejo] We > 1) zcczl w(c) then Ite ratIVE|y Theorem 1. Set a = % and v = min {17 \/ %%}, we assume the reward distributions changes
4: v S.t. % = Zwt(r:)zv v+ Zwt(c)<wt((—‘) wy(c) at arbitrary instances, but the totql number ofchgnge pOfnts is no more than V< /T times. The
5 Set Sp = (¢ : wi(c) > v) and wy(Sy) = v expected regret of TV.EXP3.M satisfies the following sublinear bound
6: else
cCT. CT
e Set Sy =0 IE[RTB]§[1+6+V]\/(e—1)—ln—.
8: endif B &
9:

Compute p§ = B ((1 - ﬂ;‘)%w + %) ,Ve

10: S, = DepRound (B, [pipf.-»f]) «———— Select a batch of arms
11:  Observe the reward g:(¢) = f(hs = ¢) forec € S; . .

12: gi(c) = 242 Ve € S, and i (c) = O otherwise (categorical variables)

C

1=

Sublinear rate on the cumulative regret

13: Ve & Sp : update we = w, x exp (BY§:(c)/C) + &
14 Ve =5 : update w. = w. + & iC=1 We

15: end for . . .
reward is time-varying

1 Wes

Uchiya, T., Nakamura, A. and Kudo, M., Algorithms for adversarial bandit problems with multiple plays. In International Conference on Algorithmic Learning Theory. 2010

J. Parker-Holder, V. Nguyen, S. Desai, and S. Roberts. "Tuning Mixed Input Hyperparameters on the Fly for Efficient Population Based AutoRL." NeurlPS’21
47



Data Augmentation and Hyper-optimization for AutoRL

e Augmentation types are categorical variables

@ Hyperparameters are continuous

@ Regularization, PPO clip, learning rate and entropy exploration.

all

crop
color-jitter 1
cutout-color
rotate
random-conv 1
flip 1
grayscale

cutout

BigFish: clip_param
[

Jumper: clip_param
|

FruitBot: clip_param
|

0 1
T-value

=3 =d 0
T-value

0 a
T-value

(a) Hyperparameter impact by augmentation type

Category Efficacy

TV.EXP3.M Arm Pulled

fiip YOOIV
color-jitter 9\}\/\)\) -
Sop 0022200022
rotate IOV ssrrs
cutout | RN
random-conv })}951
cutout-color \',///////////
PIEVE L) —
W 0-12.5M 0.0 0.2 0 20 40
&N 12.5M-25M Average AR Iteration

(b) Augmentation selection efficacy

J. Parker-Holder, V. Nguyen, S. Desai, and S. Roberts. "Tuning Mixed Input Hyperparameters on the Fly for Efficient Population Based AutoRL." NeurlPS5'21
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Takeaway: mixed categorical-continuous Bayes opt

continuous categorical

A PR N—
max f( 'xy ,x2' , X3 ,%4 )

e MAB/BO for mixed optimization I I
i []

@ Local trust region for handling mixed
optimization in high dimension

e Parallel time-varying bandit/BO for i ] Qe
population-based AutoRL =T -
Rl

2
- & 5 2
£ 3
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