Session S1.1 (Chair: Taiji Suzuki)

Ding Xuan Zhou	University of Sydney
Title:	Approximation theory of structured deep neural networks
Abstract:	

Deep learning has been widely applied and brought breakthroughs in speech recognition, computer vision, natural language processing, and many other domains. The involved deep neural network architectures and computational issues have been well studied in machine learning. But a theoretical foundation for understanding the modelling, approximation or generalization ability of deep learning models with network architectures is still in progress. An important family of structured deep neural networks is deep convolutional neural networks (CNNs) with convolutional structures. The convolutional architecture gives essential differences between deep CNNs and fully-connected neural networks, and the classical approximation theory for fully-connected networks developed around 30 years ago does not apply. This talk describes approximation and generalization analysis of deep CNNs and related structured deep neural networks.

 Tomaso Poggio
 Massachusetts Institute of Technology

 Title: Some principles in the theory of deep learning

 Abstract:

Abstract:

In recent years, artificial intelligence researchers have built impressive systems. An important question is whether there exist theoretical principles underlying those architectures, including the human brain, that perform so well in learning tasks. A theory of deep learning could solve many of todays problems around AI, such as explainability and control. Though we do not have a full theory as yet, there are very good reasons to believe in the existence of some fundamental principles of learning and intelligence. I will list some of them and focus on the feature selection properties of SGD.

Session S1.2 (Chair: Sho Sonoda)

···· · · · · ·		
Taiji Suzuki	The University of Tokyo / RIKEN AIP	
Title:	Non-convex extensions of mean-field gradient methods: applications to reinforcement learning and	
	in-context learning	
Abstract:		
In the past few years, gre	at progress has been made in the convergence analysis of mean-field Langevin dynamics (MFLD). It	
is shown that MFLD shows	s linear convergence for a convex target functional, and its time and space discretization errors are	
also clarified. However, such a theory cannot be applied to nonconvex objectives. In this presentation, we give some		
extensions of those theore	etical analyses with various potential applications such as reinforcement learning and in-context	
learning.		
First, we discuss applicabi	lity of MFLD to reinforcement learning in an actor-critic framework where the policy and Q-function	
are characterized by mear	n field neural networks. We show its rate of convergence and derive its time-space discretization	
error although the estimat	tion of the Q-function includes error and the TD-learning required in the inner loop has a difficulty of	
convergence stemming fro	om usage of semi-gradient.	
Second, we give a converg	gence analysis of a distributional min-max problem that has a lot of applications such as	
reinforcement learning. W	e propose a dual-averaging type method and show its convergence. Although the dual-averaging	
procedure prevents us fro	procedure prevents us from naively applying the log-Sobolev inequality arguments as in the convex setting, we have error	
bounds which are in a diff	bounds which are in a different form than that in the convex setting.	
Finally, we show a convergence guarantee of mean field gradient flow (MFGF) for training Transformers to obtain nonlinear		
features in the pretraining procedure of in-context learning. We show that the objective is strict-saddle and thus the MFGF is		
not captured by a critical p	point almost surely. This particularly shows the practical success of in-context learning by	
Transformers.		
Alessandro Sperduti	University of Padova	
Title:	A Framework for Flexible Design of Generative Diffusion Models for Graphs	

Abstract:

Generative models for graphs can be classified into two prominent families: one-shot models, which generate a graph in one go, and sequential models, which generate a graph by successive additions of nodes and edges. Ideally, between these two extremes lies a continuous range of models that adopt different levels of sequentiality. I will present a graph generative framework, based on the theory of Denoising Diffusion Probabilistic Models (DDPM), that supports the specification of a sequentiality degree. Performances of models designed by this framework for different sequentiality degrees are then presented, in terms of quality, run time, and memory.

Session S1.3 (Chair: Masaaki Imaizumi)	
Marco Cuturi	Apple / CREST-ENSAE
Title:	On Neural Transport Methods
Abstract:	
I will present in this work	an overview of recent advances in NN modeling of optimal transport maps, as well as applications to
the Brenier polar factoriz	ation theorem.
Ichiro Takeuchi	Nagoya University / RIKEN AIP
Title:	Statistical Test for Deep Learning-Driven Hypotheses
Abstract:	
When utilizing hypothese	s generated by deep learning models in high-stakes decision-making tasks, such as medical diagnosis
or autonomous driving, it	t is essential to ensure their reliability. In this talk, I introduce an approach to evaluate the reliability
of deep learning-driven h	ypotheses based on statistical tests. Since deep learning generates hypotheses through complex
transformations of intrica	te data, developing valid statistical tests is considered challenging. However, by employing a new
statistical inference frame	ework known as Selective Inference, we can obtain valid \$p\$-values with theoretical guarantees,
even with finite sample s	izes. In this talk, I will showcase examples where \$p\$-values for hypotheses generated by various
deep learning models, in	cluding CNNs, Transformers, and Diffusion Models, have proven effective in medical image analysis
tasks.	
Kenji Fukumizu	The Institute of Statistical Mathematics
Title:	Extended Flow Matching for Conditional Generation
Abstract:	
The task of conditional g	eneration is one of the most important applications of generative models, and numerous methods
have been developed to	date based on the celebrated diffusion models, with the guidance-based classifier-free method taking
the lead.	
However, the theory of t	he guidance-based method not only requires the user to fine-tune the ``guidance strength'', but its
target vector field does n	ot necessarily correspond to the conditional distribution used in the training. In this work, we develop
the theory of conditional	generation based on Flow Matching, a current strong contender of diffusion methods.
Motivated by the interpre	tation of a probability path as a distribution on path space, we establish a novel theory of flow-based
generation of conditional	distribution by
employing the mathemat	ical framework of generalized continuity equation instead of the continuity equation in flow matching.
This theory naturally deri	ves a method that aims to match the matrix field instead of the vector field. Our framework ensures
the continuity of the gen	erated conditional distribution through the flow between conditional distributions.
We will present our theory	ry through experiments and mathematical results.

Session S1.4 (Chair: Ma	sashi Sugiyama)
Klaus-Robert Mueller	Technische Universität Berlin
Title:	ML meets Quantum Chemistry
Abstract:	
The introduction of ML in	Quantum Chemistry has created a new research direction and has given rise to significant and
insightful progress. The ta	Ik first introduces the topic and subsequently discusses recent developments. Emphasis is placed at
a reflection of mutual cros	s-fertilization; e.g. physics challenges gave rise to novel ML architectures.
Naoto Yokoya	The University of Tokyo / RIKEN AIP
Title:	Advancing Remote Sensing with Deep Learning
Abstract:	
Deep learning has led to r	emarkable advances in remote sensing data analysis, improving both the accuracy and feasibility of
previously difficult tasks. I	lowever, a notable challenge remains: the scarcity of large-scale training data for many remote
sensing tasks. In this talk,	we will highlight our recent initiatives aimed at mitigating this challenge in the understanding and
acquisition of remote sens	ing imagery. Specifically, we'll showcase deep learning methods tailored for land cover semantic
recognition and topograph	nic information extraction from remote sensing data. Additionally, we'll present advances in
computational imaging de	signed to overcome the inherent limitations of spatial, temporal, and spectral resolution in imaging
systems.	
Le Song	Bioman / MBZLIAI
Title:	Foundational AI Models for Biological Systems
Abstract:	
What will be the foundation	anal AI models for biological systems? What data can be used to build them? How to build them
exactly? Nowadays, biolog	nical data grow rapidly and converge into a few standard modalities, such as DNA, RNA and protein
sequences and structures	biomolecular interaction networks, and single-cell RNA sequencing and imaging. It seems timely to
ask the intriguing question	is as to whether foundational AI models can be established for biological systems which possess
certain level of generality and transferability and can serve as the infrastructure to enhance the entire spectrum of	
downstream prediction tasks from different scales of biological systems	
In this talk, I will share m	y recent work along this direction and introduce the xTrimo family of large scale pretrained models
everaging a large amount of data from protein sequences, structures, protein-protein interactions, and single-cell	
transcriptomics. The pretr	ained models can be used as the foundation to address many predictive tasks arising from protein

design and cellular engineering and achieve SOTA performances.

Session S2.1 (Chair: Pierre Baldi)		
Shun-ichi Amari	RIKEN	
Title:	Wasserstein Statistics and AI	
Abstract:		

Information geometry and Wasserstein geometry provide different geometrical structures to the manifold of probability distributions. Both are used in the studies of statistical inference and deep learning. We focus here on the characteristics of Fisher-based statistics and Wasserstein-based statistics. Given an empirical distribution from observed data and a statistical model, F-estimator is the minimizer of the KL-divergence and W-estimator is the minimizer of the W distance from the empirical distribution to the model. The F-efficiency and W-efficiency are discussed.

Nihat Ay	Hamburg University of Technology
Title:	On the Fisher-Rao gradient of the Evidence Lower Bound
Abstract:	

The talk is based on joint work with Jesse van Oostrum and Adwait Datar. In this work, we study the Fisher-Rao gradient, also referred to as the natural gradient, of the evidence lower bound, the ELBO, which plays a crucial role within the theory of the Variational Autonecoder, the Helmholtz Machine and the Free Energy Principle. The natural gradient of the ELBO is related to the natural gradient of the Kullback-Leibler divergence from a target distribution, the primary objective function of learning. Based on invariance properties of gradients within information geometry, conditions on the underlying model are provided that ensure the equivalence of minimising the primary objective function and the maximisation of the ELBO.

Minh Ha Quang	RIKEN AIP
Title:	Infinite-dimensional Fisher-Rao metric and Wasserstein distances

Abstract:

Information geometry and Optimal Transport have been attracting much research attention in various fields, in particular machine learning and statistics. In this talk, we present results on the generalization of the central concepts of Fisher-Rao metric and Wasserstein distances for finite-dimensional Gaussian measures to the setting of infinite-dimensional Gaussian measures and Gaussian processes. The mathematical formulation involves the interplay of Information Geometry, Optimal Transport, and Operator Theory, along with the theory of Gaussian processes and the methodology of reproducing kernel Hilbert spaces (RKHS).

Session S2.2 (Chair: Shun-ichi Amari)

Pierre Baldi	University of California Irvine	
Title:	A Theory of Neuronal Synaptic Balance	
Abstract:		
When a typical feed-forwa	rd neural network is trained by gradient descent, with an L2 regularizer to avoid overly large	
synaptic weights, a strang	ynaptic weights, a strange phenomenon occurs: at the optimum, each neuron becomes "balanced" in the sense that the L2	
norm of its incoming syna	otic weights becomes equal to the L2 norm of its outgoing	
synaptic weights. We deve	elop a theory that explains this phenomenon and exposes its generality. Balance emerges with a	
variety of activation function	ariety of activation functions, a variety of regularizers including all Lp regularizers, and a variety of networks including	
recurrent networks. A sim	ecurrent networks. A simple local balancing algorithm can be applied to any neuron and at any time, instead of just at the	
optimum.		
lost remarkably, for any starting point, stochastic iterated application of the local balancing algorithm always converges to a		
unique, globally balanced, state.		
Emtivez Khan		

The Bayesian Learning Rule Title: Abstract:

Humans and animals have a natural ability to autonomously learn and quickly adapt to their surroundings. How can we design machines that do the same? In this talk, I will present Bayesian principles to bridge such gaps between humans and machines. I will show that a wide-variety of machine-learning algorithms are instances of a single learning-rule derived from Bayesian principles. I will show our recent result on scaling up variational learning to large deep networks (e.g., GPT-2). Time permitting, I will also briefly discuss the dual perspective yielding new mechanisms for knowledge transfer in learning machines.

Session S2.3 (Chair: Emtiyaz Khan)		
Kenji Doya	Okinawa Institute of Science and Technology	
Title:	Bayesian inference, reinforcement learning, and the cortico-basal ganglia circuit	
Abstract:		
Bayesian inference is a	a standard way of handling uncertainties in sensory perception and reinforcement learning is a common	
vay of acting in unknown environments. While they are used in combination for perception and action in uncertain		
environments, the sim	environments, the similarity of their computations has been formulated as the duality of inference and control, or control as	
inference.		
In this talk, I will revie	w these theoretical frameworks and discuss their implications in understanding the common circuit	
architectures of the sensory and motor cortices, and possible roles of the basal ganglia in motor and sensory processing.		
Ilsang Ohn	Inha University	
Title:	On adaptive inference with variational Bayes	
Abstract:		
In this work, we propo	bse a novel approach for adaptive inference with variational Bayes. The proposed method first computes	
a variational posterior	over each individual model separately and then combines them with certain weights to produce a	
variational posterior ov	ver the entire model. We show that this aggregated variational posterior can be a good approximation to	
the original posterior o	over the entire model under mild conditions, and due to this approximation property, it can attain	
adaptive contraction ra	ates. We illustrate the general results in a number of examples, including deep neural networks and	
Gaussian processes.		
Yongdai Kim	Seoul National University	
Title:	Posterior concentration rates of Bayesian deep neural networks	
Abstract:		
Bayesian methods in t	raining deep neural networks (BNNs) have received much attention and have been effectively utilized in	
a wide range of AI applications		
In this talk, theoretical properties of BNNs are considered. In particular, posterior concentration rates are derived for		
regression problems where		
the true regression function is smooth. Firstly, existing results about the posterior concentration rates or BNN are reviewed		
and their limitations are discussed. Then, a new result of the posterior concentration rates is given which reduces a gap		
between theories and	etween theories and applications. If time is allowed, some issues of computations in BNNs are discussed.	

Session S2.4 (Chair: Kenii Fukumizu)			
Sho Sonoda	RIKEN AIP		
Title:	Ridgelet Transform: Harmonic Analysis for Deep Neural Networks		
Abstract:			
Ridgelet transform is a pse	eudo-inverse operator of neural networks. Namely, given a function \$f ¥in L^2(¥mathbb{R}^m)\$,		
he ridgelet transform \$R[f]\$ describes how the network parameters should be distributed for the network to represent \$f\$.			
in this talk, I will explain two systematic schemes to derive the ridgelet transform. As applications, we investigate modern			
neural networks involving	neural networks involving the ones on manifolds \$G/K\$ and Hilbert spaces \$H\$ as well as deep networks, and derive their		
associated ridgelet transfo	rms.		
Magaali Imajaumi	The University of Televe / DI/(TNLAID		
	The University of Tokyo / RIKEN AIP		
	Statistical Analysis on In-Context Learning		
Abstract:			
Deep learning and artificial	l intelligence technologies have made great progress, and the usage of foundation models has		
attracted strong attension	by its general ability. Motivated by this fact, mathematical understanding is required to efficiently		
control and develop these	technologies. In this talk, I will present a statistics-based analysis of a scheme called in-context		
learning, which is an usefu	Il framework of meta-learning to describe foundation models. I argue that in-context learning can		
efficiently learn the latent	structure of the data, using the property of transformers used in the learning scheme can efficiently		
handle the distribution of o	observations.		
Frank Wang	National Taiwan University & NV/IDIA		
	Vision Language Models for Novel Object Captioning & Natural Language Explanation		
Abstract:			
The convergence of langua	The convergence of language, vision, and generative models is a captivating and rapidly advancing research domain. In this		
talk, we will delve into the intricate interplay between these disciplines, showcasing how generative models have sparked a			
revolution in creative and analytical applications. We will explore the mechanisms behind models' ability to decode images into			
text and vice versa, shedding light on their potential to reshape human-machine interaction. With the introduction of a			
number of our recent research works on novel object captioning and natural language explanation, we will also discuss its			
challenges and emerging opportunities.			

	Tokyo Institute of Technology
Title:	Singular Learning Theory, Deep Learning, and AI Alignment
Abstract:	
From the viewpoint of	statistical learning theory, deep neural networks are nonlinear and nonregular statistical models.
Neither the likelihood fu	unction nor the posterior distribution of them can be approximated by any normal distribution, resulting
that algebro-geometric	foundation is necessary to study their generalization performance. In this talk, we explain singular
learning theory by whic	ch both the marginal likelihood and the generalization error are represented by birational invariants.
and introduce several r	nethods how to apply them to AI alignment.
Guido Montúfar	University of California, Los Angeles
Title:	Mildly Overparameterized ReLU Networks Have a Favorable Loss Landscape
Abstract:	
We study the loss land:	scape of both shallow and deep, mildly overparameterized ReLU neural networks on a generic finite
input dataset for the sc	quared error loss. We show both by count and volume that most activation patterns correspond to
parameter regions with	no bad local minima. Furthermore, for one-dimensional input data, we show most activation regions
realizable by the netwo	ork contain a high dimensional set of global minima and no bad local minima. We experimentally
confirm these results b	y finding a phase transition from most regions having full rank Jacobian to many regions having
deficient rank dependin	ig on the amount of overparameterization. The talk is based on work with Kedar Karhadkar, Michael
deficient rank dependir Murray, and Hanna Tse	ng on the amount of overparameterization. The talk is based on work with Kedar Karhadkar, Michael Pran.
deficient rank dependir Murray, and Hanna Tse	ng on the amount of overparameterization. The talk is based on work with Kedar Karhadkar, Michael Pran.
deficient rank dependir Murray, and Hanna Tse Atsushi Nitanda	ng on the amount of overparameterization. The talk is based on work with Kedar Karhadkar, Michael eran. A*STAR
deficient rank dependir Murray, and Hanna Tse Atsushi Nitanda Title:	ng on the amount of overparameterization. The talk is based on work with Kedar Karhadkar, Michael eran. A*STAR Convergence Analysis of Mean-field Optimization
deficient rank dependir Murray, and Hanna Tse Atsushi Nitanda Title: Abstract:	ng on the amount of overparameterization. The talk is based on work with Kedar Karhadkar, Michael eran. A*STAR Convergence Analysis of Mean-field Optimization
deficient rank dependir Murray, and Hanna Tse Atsushi Nitanda Title: Abstract: Optimization of mean-f	ig on the amount of overparameterization. The talk is based on work with Kedar Karhadkar, Michael eran. A*STAR Convergence Analysis of Mean-field Optimization
deficient rank dependir Murray, and Hanna Tse Atsushi Nitanda Title: Abstract: Optimization of mean-f under the mean-field re	ig on the amount of overparameterization. The talk is based on work with Kedar Karhadkar, Michael eran. A*STAR Convergence Analysis of Mean-field Optimization field models has recently attracted attention due to its connection to training two-layer neural networks egime. We have established the theory of convex analysis for these models to analyze their
deficient rank dependir Murray, and Hanna Tse Atsushi Nitanda Title: Abstract: Optimization of mean-f under the mean-field re optimization dynamics	and on the amount of overparameterization. The talk is based on work with Kedar Karhadkar, Michael eran. A*STAR Convergence Analysis of Mean-field Optimization Field models has recently attracted attention due to its connection to training two-layer neural networks egime. We have established the theory of convex analysis for these models to analyze their and have derived various optimization methods with convergence guarantees. In this talk, I present
deficient rank dependir Murray, and Hanna Tse Atsushi Nitanda Title: Abstract: Optimization of mean-f under the mean-field re optimization dynamics recent advances in mea	ag on the amount of overparameterization. The talk is based on work with Kedar Karhadkar, Michael eran. A*STAR Convergence Analysis of Mean-field Optimization ield models has recently attracted attention due to its connection to training two-layer neural networks egime. We have established the theory of convex analysis for these models to analyze their and have derived various optimization methods with convergence guarantees. In this talk, I present
deficient rank dependir Murray, and Hanna Tse Atsushi Nitanda Title: Abstract: Optimization of mean-f under the mean-field re optimization dynamics recent advances in mea	ag on the amount of overparameterization. The talk is based on work with Kedar Karhadkar, Michael eran. A*STAR Convergence Analysis of Mean-field Optimization ield models has recently attracted attention due to its connection to training two-layer neural networks egime. We have established the theory of convex analysis for these models to analyze their and have derived various optimization methods with convergence guarantees. In this talk, I present an-field optimization methods including mean-field Langevin dynamics.
deficient rank dependir Murray, and Hanna Tse Atsushi Nitanda Title: Abstract: Optimization of mean-f under the mean-field re optimization dynamics recent advances in mea Session S3.2 (Chair: 0 Akiko Takeda	ag on the amount of overparameterization. The talk is based on work with Kedar Karhadkar, Michael eran. A*STAR Convergence Analysis of Mean-field Optimization ield models has recently attracted attention due to its connection to training two-layer neural networks egime. We have established the theory of convex analysis for these models to analyze their and have derived various optimization methods with convergence guarantees. In this talk, I present an-field optimization methods including mean-field Langevin dynamics. Qibin Zhao) The University of Tokyo / RIKEN AIP
deficient rank dependir Murray, and Hanna Tse Atsushi Nitanda Title: Abstract: Optimization of mean-f under the mean-field re optimization dynamics recent advances in mea Session S3.2 (Chair: o Akiko Takeda Title:	In the amount of overparameterization. The talk is based on work with Kedar Karhadkar, Michael eran. A*STAR Convergence Analysis of Mean-field Optimization ield models has recently attracted attention due to its connection to training two-layer neural networks egime. We have established the theory of convex analysis for these models to analyze their and have derived various optimization methods with convergence guarantees. In this talk, I present an-field optimization methods including mean-field Langevin dynamics. Qibin Zhao) The University of Tokyo / RIKEN AIP Bandom subspace optimization methods for large-scale optimization problems
deficient rank dependir Murray, and Hanna Tse Atsushi Nitanda Title: Abstract: Optimization of mean-f under the mean-field re optimization dynamics recent advances in mea Session S3.2 (Chair: 0 Akiko Takeda Title: Abstract:	ag on the amount of overparameterization. The talk is based on work with Kedar Karhadkar, Michael eran. A*STAR Convergence Analysis of Mean-field Optimization ield models has recently attracted attention due to its connection to training two-layer neural networks egime. We have established the theory of convex analysis for these models to analyze their and have derived various optimization methods with convergence guarantees. In this talk, I present an-field optimization methods including mean-field Langevin dynamics. Qibin Zhao) The University of Tokyo / RIKEN AIP Random subspace optimization methods for large-scale optimization problems
deficient rank dependir Murray, and Hanna Tse Atsushi Nitanda Title: Abstract: Optimization of mean-f under the mean-field re optimization dynamics recent advances in mea Session S3.2 (Chair: o Akiko Takeda Title: Abstract: Bandom projection tech	ag on the amount of overparameterization. The talk is based on work with Kedar Karhadkar, Michael eran. A*STAR Convergence Analysis of Mean-field Optimization ield models has recently attracted attention due to its connection to training two-layer neural networks egime. We have established the theory of convex analysis for these models to analyze their and have derived various optimization methods with convergence guarantees. In this talk, I present an-field optimization methods including mean-field Langevin dynamics. Qibin Zhao) The University of Tokyo / RIKEN AIP Random subspace optimization methods for large-scale optimization problems
deficient rank dependir Murray, and Hanna Tse Atsushi Nitanda Title: Abstract: Optimization of mean-f under the mean-field re optimization dynamics recent advances in mea Session S3.2 (Chair: o Akiko Takeda Title: Abstract: Random projection tech or variables of optimiza	and on the amount of overparameterization. The talk is based on work with Kedar Karhadkar, Michael eran. A*STAR Convergence Analysis of Mean-field Optimization ield models has recently attracted attention due to its connection to training two-layer neural networks egime. We have established the theory of convex analysis for these models to analyze their and have derived various optimization methods with convergence guarantees. In this talk, I present an-field optimization methods including mean-field Langevin dynamics. Qibin Zhao) The University of Tokyo / RIKEN AIP Random subspace optimization methods for large-scale optimization problems
deficient rank dependir Murray, and Hanna Tse Atsushi Nitanda Title: Abstract: Optimization of mean-f under the mean-field re optimization dynamics recent advances in mea Session S3.2 (Chair: of Akiko Takeda Title: Abstract: Random projection tech or variables of optimization problems	In the amount of overparameterization. The talk is based on work with Kedar Karhadkar, Michael eran. A*STAR Convergence Analysis of Mean-field Optimization ield models has recently attracted attention due to its connection to training two-layer neural networks egime. We have established the theory of convex analysis for these models to analyze their and have derived various optimization methods with convergence guarantees. In this talk, I present an-field optimization methods including mean-field Langevin dynamics. Qibin Zhao) The University of Tokyo / RIKEN AIP Random subspace optimization methods for large-scale optimization problems hniques based on the Johnson-Lindenstrauss lemma are used for randomly aggregating the constraints ation problems while approximately preserving their optimal values, which leads to smaller-scale In this talk, we show a few applications of random matrix techniques for construction random
deficient rank dependir Murray, and Hanna Tse Atsushi Nitanda Title: Abstract: Optimization of mean-f under the mean-field re optimization dynamics recent advances in mea Session S3.2 (Chair: 0 Akiko Takeda Title: Abstract: Random projection tech or variables of optimiza optimization problems.	and on the amount of overparameterization. The talk is based on work with Kedar Karhadkar, Michael aran. A*STAR Convergence Analysis of Mean-field Optimization ield models has recently attracted attention due to its connection to training two-layer neural networks egime. We have established the theory of convex analysis for these models to analyze their and have derived various optimization methods with convergence guarantees. In this talk, I present an-field optimization methods including mean-field Langevin dynamics. Qibin Zhao) The University of Tokyo / RIKEN AIP Random subspace optimization methods for large-scale optimization problems hniques based on the Johnson-Lindenstrauss lemma are used for randomly aggregating the constraints ation problems while approximately preserving their optimal values, which leads to smaller-scale In this talk, we show a few applications of random matrix techniques for constructing random at iteratively solve smaller-scale subproblems and discuss their convergence speed. This talk is based

Amy Zhang	The University of Texas at Austin
Title:	Self-supervised Reinforcement Learning for Zero-shot Optimality
Abstract:	

Recent work in language and video generation have shown the benefits of autoregressive objectives for generation of sequential data. However, these methods also often require additional fine-tuning, like RLHF, in order to output the desired behavior, especially if the data quality is poor. In this talk, we explore a different paradigm borrowed from work on self-supervised RL, or zero-shot RL. We will present methods that only assume access to unlabeled sequential data for which we can provably extract the optimal value function given access to task information. We first explore the goal-conditioned RL setting, which allows us to extract optimal value functions for goal states, then an expanded setting that can handle any downstream task.

Session S3.3 (Chair: Amy Zhang)		
Han Zhao	University of Illinois at Urbana-Champaign	
Title:	Revisiting Scalarization in Multi-Task Learning: A Theoretical Perspective	
Abstract:		

Linear scalarization, i.e., combining all loss functions by a weighted sum, has been the default choice in the literature of multitask learning (MTL) since its inception. In recent years, there has been a surge of interest in developing Specialized Multi-Task Optimizers (SMTOs) that treat MTL as a multi-objective optimization problem. However, it remains open whether there is a fundamental advantage of SMTOs over scalarization. In fact, heated debates exist in the community comparing these two types of algorithms, mostly from an empirical perspective. In this talk, I will revisit scalarization from a theoretical perspective. I will be focusing on linear MTL models and studying whether scalarization is capable of fully exploring the Pareto front. Our findings reveal that, in contrast to recent works that claimed empirical advantages of scalarization, scalarization is inherently incapable of full exploration, especially for those Pareto optimal solutions that strike the balanced trade-offs between multiple tasks. More concretely, when the model is under-parametrized, we reveal a multi-surface structure of the feasible region and identify necessary and sufficient conditions for full exploration. This leads to the conclusion that scalarization is in general incapable of tracing out the Pareto front. Our theoretical results provide a more intuitive explanation of why scalarization fails beyond non-convexity.

Arthur Gretton	University College London
Title:	Learning to act in noisy contexts using deep proxy learning
Abstract:	

We consider problem of evaluating the expected outcome of an action or policy, using off-policy observations of user actions, where the relevant context is noisy/anonymized. This scenario might arise due to privacy constraints, data bandwidth restrictions, or intrinsic properties of the setting.

We will employ the recently developed tool of proxy causal learning to address this problem. In brief, two noisy views of the context are used: one prior to the user action, and one subsequent to it, and influenced by the action. This pair of views will allow us to recover the average causal effect of an action under reasonable assumptions. As a key benefit of the proxy approach, we need never explicitly model or recover the hidden context. Our implementation employs learned neural net representations for both the action and context, allowing each to be complex and high dimensional (images, text). We demonstrate the deep proxy learning method in a setting where the action is an image, and show that we outperform an autoencoder-based alternative.

Masashi Sugiyama	RIKEN AIP / The University of Tokyo
Title:	Importance-Weighting Approach to Distribution Shift Adaptation
Abstract:	

Standard machine learning methods suffer from distribution shifts between training and test data. In this talk, I will first give an overview of the classical importance weighting approach to distribution shift adaptation, which consists of an importance estimation step and an importance-weighted training step. Then, I will present a more recent approach that simultaneously estimates the importance weight and trains a predictor. I will also discuss a more practical scenario of continuous distribution shifts, where the data distributions change continuously over time. Finally, I will discuss ongoing challenges such as joint distribution shift and out-of-distribution adaptation.

Session S3.4 (Chair: Han Zhao)		
Qibin Zhao	RIKEN AIP	
Title:	Efficient and Robust Machine Learning with Tensor Networks	
Abstract:		
Modern ML methods have achieved the remarkable performance by dramatically increasing the DNN model size and the		

amount of high quality data samples. However, how to learn information from data efficiently and train a parameter efficient model become important in particular applications. Tensor Networks (TNs) have been increasingly investigated and applied to machine learning and signal processing, due to their advantages in handling large-scale and high-dimensional problems, model compression in DNNs, and efficient computations for learning algorithms. This talk aims to present some recent progresses of TNs technology applied to machine learning from perspectives of basic principle and algorithms, particularly in unsupervised learning, data completion, multi-model learning and various applications in deep learning modeling and adversarial robustness. Finally, we will also present potential research directions and new trends in this area.