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The gist

Non-convex unconstrained minimization

min
x∈Rn

f (x),

where f : Rn → R is twice differentiable

Subspace optimization

min
u∈Rs

f (x + P⊤u),

where P ∈ Rs×n is a random matrix.

Can we speed up the computation time?

Global and local convergence properties?
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Previous works

Random Subspace Newton (RSN) [Gower et al., 2019](f is convex)

By computing the Newton direction on the function u 7→ f (xk + P⊤
k uk),

we obtain uk = −(Pk∇2f (xk)P
⊤
k )−1Pk∇f (xk), hence

xk+1 = xk − tkP
⊤
k (Pk∇2f (xk)P

⊤
k )−1Pk∇f (xk).

They prove global sub-linear convergence and local linear convergence if f
is strongly convex.

[Hanzely et al., 2020]: Cubically-regularized subspace Newton
method.

[Kovalev et al., 2020]: random subspace version of the BFGS method.

[Roberts and Royer, 2022]: probabilistic direct-search method in
reduced random spaces (non-convex problems). The authors prove
sub-linear convergence.
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Our work

Based on regularized Newton method (RNM) for the unconstrained
non-convex optimization [Ueda and Yamashita, 2010], we propose the
randomized subspace regularized Newton method (RS-RNM):

dk = −P⊤
k (Pk∇2f (xk)P

⊤
k + ηk Is)

−1Pk∇f (xk),
xk+1 = xk + tkdk ,

where ηk is defined to ensure Pk∇2f (xk)P
⊤
k + ηk Is ≻ 0 and tk satisfies

Armijo’s rule.

In [Ueda and Yamashita, 2010] the authors prove global sub-linear
convergence and local quadratic convergence under local-error bound
condition.

Can we extend these results to the random subspace setting ?
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What is Random Projection

X

s = O
(
log |X |
ε2

)
n-dimensional

s-dimensional
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Random Projection

Lemma JLL

Let P ∈ Rd×n,Pij ∼ N(0, 1/s), i.i.d..
Then for any x ∈ Rn and ε ∈ (0, 1), we have

Prob [(1− ε)∥x∥22 ≤ ∥Px∥22 ≤ (1 + ε)∥x∥22] ≥ 1− 2 exp(−Cε2s),

where C is an absolute constant.

X

s = O
(
log |X |
ε2

)
n-dimensional

s-dimensional
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Concentration inequality for random matrices

P ∈ Rs×n

Proposition

There exists a constant C1 > 0s such that:∥∥∥∥1nPP⊤ − Is

∥∥∥∥ ≤ C1 sn ,
holds with probability at least 1− 2 exp(−s).
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Why is it useful ?

Remember that

dk = −P⊤
k (Pk∇2f (xk)P

⊤
k + ηk Is)

−1Pk∇f (xk),

Therefore, with high probability,

dk = 0 ⇐⇒ ∇f (xk) = 0.
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Algorithm 1 Randomized subspace regularized Newton method (RS-RNM)

input: x0 ∈ Rn, γ ≥ 0, c1 > 1, c2 > 0, α, β ∈ (0, 1)
1: k ← 0
2: repeat
3: sample a random matrix: Pk ∼ Gaussian matrix N (0, 1/s)s×n

4: compute the regularized sketched hessian:
Mk = Pk∇2f (xk)P

⊤
k + c1Λk Is + c2∥∇f (xk)∥γ Is , where Λk =

max(0,−λmin(Pk∇2f (xk)P
⊤
k ))

5: compute the search direction: dk = −P⊤
k M−1

k Pk∇f (xk)
6: apply the backtracking line search with Armijo’s to compute lk ≥ 0

such that (1) holds. Set tk = βlk , xk+1 = xk + tkdk and k ← k + 1
7: until the stopping criteria is satisfied
8: return the last iterate xk

f (xk)− f (xk + βlkdk) ≥ −αβlkg⊤
k dk . (1)
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Global convergence

Assumption (1)

The level set of f at the initial point x0 is compact, i.e.,
Ω := {Rn : f (x) ≤ f (x0)} is compact.

Assumption (2)

1 γ ≤ 1/2,

2 α ≤ 1/2,

3 There exists LH > 0 such that

∥∇2f (x)−∇2f (y)∥ ≤ LH∥x − y∥, ∀x , y ∈ Ω+ B(0, r1),

where r1 :=
CU1−γ

g n

c2s
, and ∥∇f (xk)∥ ≤ Ug .
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Global convergence
Let

tmin = min

(
1,

βc22 s
2

C2LHU1−2γ
g n2

)
p =

αtmin

2C(1 + c1)
n
sUH + 2c2U

γ
g
.

Theorem

Suppose that Assumptions (1) and (2) hold. Let

m =

⌊
f (x0)− f ∗

pε2

⌋
+ 1

Then, with probability at least 1− 2m
(
exp(−C0

4 s)− exp(−s)
)
, we have√

f (x0)− f ∗

mp
≥ min

k=0,1,...,m−1
∥∇f (xk)∥.

O(ε−2) complexity: same that [Ueda and Yamashita, 2010].
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Success probability

We want 1− 2m
(
exp(−C0

4 s)− exp(−s)
)
as close to one as possible.

Assume that ∥x0 − x∗∥ ≤ C̄
√
n for some constant C̄ > 0, then for some

constant Ĉ > 0,

m ≤ Ĉ
n9/2

ε
.

By taking s = D log(n), for D > 9/2 ensure

1− 2m
(
exp(−C0

4 s)− exp(−s)
)
tends to 1.
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m ≤ Ĉ
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m ≤ Ĉ
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Local convergence

Assume that {xk} converge to a strict local minima x̄ . We show that

the sequence {f (xk)} converges locally linearly to f (x̄)

when f is strongly convex, we cannot aim at local super-linear
convergence using random subspace.
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Local convergence: assumptions

Assumption (2’)

In a neighborhood of x̄ , we have

∥∇2f (x)−∇2f (y)∥ ≤ LH∥x − y∥.

Assumption (3)

We have that s = o(n), that is, lim
n→+∞

s
n = 0.

Assumption (4)

We assume that

1 There exists σ ∈ (0, 1) such that r = rank(∇2f (x̄)) ≥ σn

2 There exists ρ ∈ (0, 3) and C̃ such that in a neighborhood of x̄ ,
f (xk)− f (x̄) ≥ C̃∥xk − x̄∥ρ holds.
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Proposition 1

Let 0 < ε0 < 1. Then under Assumptions (3) and (4.1) there exists
n0 ∈ N (which depends only on ε0 and σ) and a neighborhood B∗ ⊆ B̄
such that if n ≥ n0, for any x ∈ B∗,

P∇2f (x)P⊤ ⪰ (1− ε0)
2n

2s
σλ̄Is λ̄ = λr (x̄)/2

holds with probability at least 1− 6 exp(−s).

PL inequality

There exists n0 ∈ N (which depends only on ε0 and σ) and neighborhoods
B̂ ⊂ B∗ and B0 (a neighborhood of 0 ∈ Rs) such that if n ≥ n0, for any
x ∈ B̂,

∥P∇f (x)∥2 ≥ (1− ε0)
2n

s
σλ̄

(
f (x)− min

u∈B0

f (x + P⊤u)

)
holds with probability at least 1− 6 exp(−s).
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Proposition 2

Under Assumptions (1),(2’) and (4). there exists 0 < κ < 1, k0 ∈ N,
n0 ∈ N, and C̄ > 0 such that if n ≥ n0, k ≥ k0, we have with probability
1− 6(exp(−s) + exp(−C0

4 s)):

f (xk)− min
u∈B0

f (xk + P⊤
k u) ≥ C̄ (f (xk)− f (x̄)).
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Local convergence: Theorem 1

Theorem

Under Assumptions (1),(2’),(3) and (4), there exists 0 < κ < 1, k0 ∈ N,
and n0 ∈ N such that if n ≥ n0, k ≥ k0, then

f (xk+1)− f (x̄) ≤ κ(f (xk)− f (x̄)).

holds with probability at least 1− 6(exp(−s) + exp(−C0
4 s)).

Theorem

Under Assumptions (1),(2’),(3) and (4), there exists 0 < κ′ < 1, s0 ∈ N,
k0 ∈ N, and n0 ∈ N such that if n ≥ n0, k ≥ k0, then

E[f (xk+1)− f (x̄)] ≤ κ′E[f (xk)− f (x̄)].

holds if s ≥ s0.
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Super-linear convergence?

Assumption (5)

We assume that
(C + 2)2s < n.

Theorem

Under Assumptions (2’) and (5), if f is locally strongly convex around x̄ .
There exists a constant c > 0 such that for k large enough,

∥xk+1 − x̄∥ ≥ c∥xk − x̄∥

holds with probability at least 1− 2 exp(−C0
4 )− 2 exp(−s).

We deduce from the theorem and the assumptions that there exists a
constant c ′ such that

f (xk+1)− f (x̄) ≥ c ′(f (xk)− f (x̄)),

with probability at least 1− 2 exp(−C0
4 )− 2 exp(−s).
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Theorem

Under Assumptions (2’) and (5), if f is locally strongly convex around x̄ .
There exists a constant c ′ > 0 such that for k large enough, and s greater
than some constant,

E[∥xk+1 − x̄∥] ≥ c ′E[∥xk − x̄∥].
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Numerical experiments: Support vector regression
Data: ∀i ≤ m, (xi , yi ) ∈ Rn × {0, 1}, we aim minimizing sum of a loss
function and a regularizer

f (w) =
1

m

m∑
i=1

ℓ(yi − x⊤i w) + λ∥w∥2.

Internet advertisements dataset from UCI
repository[Dua and Graff, 2017] processed so that the number of
instances is m = 600 and and n = 1500.

Comparison with Gradient Descent (GD) and Regularized Newton
Method (RNM)

Step sizes are all determined by Armijo backtracking line search

The parameters are fixed as follows:

c1 = 2, c2 = 1, γ = 0.5, α = 0.3, β = 0.5, s ∈ {100, 200, 400}.
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Loss function

ℓ(t) =
2t2

t2 + 4

t

ℓ(t)

O−1 1

1

Figure: The robust loss functions.
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Figure: iterations versus f (w) (log10-scale)
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Figure: time versus f (w) (log10-scale)).
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Future work

Can we find a second order subspace algorithm with local superlinear
convergence ? Full paper: ”T. Fuji, P.L. Poirion, A. Takeda, Randomized

subspace regularized Newton method for unconstrained non-convex
optimization. arXiv:2209.04170, (2022)”
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