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Representation Learning



The issue with data representation

objet de la classe "?" objet de la classe "!"
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A well-known case
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Representation is critical

A difficult task

• Representation is the first step of any data processing pipeline

• It has to be adapted to the downstream task

• Representation can be done explicitly or implicitly

but it can get harder

• when data are not tabular/numerical (e.g. structured data)

• when the data live on a particular space under some constraint

or under a peculiar geometry (e.g. data on manifold)

• when some invariances are involved

Focus of this talk

• Incorporate prior knowledge in a representation learning step

• Deep models will not be covered (or as promising extensions) 5



Learning with structures in data

Motivation

• feasible solutions (e.g. averaging structured data)

• leveraging invariances in data (as permutations in graph data)

• incorporating prior knowledge

• accelerating optimization problem (by reducing the search

space)
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Learning with structures in data

Motivation

• feasible solutions (e.g. averaging structured data)

• leveraging invariances in data (as permutations in graph data)

• incorporating prior knowledge

• accelerating optimization problem (by reducing the search

space)

Applications

• handling malicious applications as valued graphs (call graphs)

• electrodes covariance matrices to represent EEG signals (using

Riemannian geometry)

• halving strategy in causal structure
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Constraints in counterfactual

application



Framework : controlled randomized experiment

A

B

Treatment group

Control group

X

......
A/B Test

gg
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Framework : controlled randomized experiment

Goal

• Check the efficiency of a treatment

• Find an optimal treatment strategy (?)

Limits

• no parallel universe to access to the counterfactual outcome

A ∩ B = ∅

• A/B testing can give an answer for the whole population (but

not at the level of the individual)

Uplift modelling aims at finding a strategy (given the features of

the users/patients) for the treatment such it has the best overall

effect.
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Impact of a treatment

A

B

Treatment group

Control group

X

75%

25%

10%

90%

Treatment 1

Positive impact of the treatment
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Impact of a treatment

A

B

Treatment group

Control group

X

65%

35%

63%

37%

Treatment 2

No significant impact

but it can be more complex than it looks as side-effect could

compensate positive responses...
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What is the uplift for a given individual ?

X = (xi )1≤i≤n

Y = 1

Y = 0

Y = 1

Y = 0

A

B

Treatment group: T=1

Control group: T=0

X

P(Y = 1|X = x ,T = 1)− P(Y = 1|X = x ,T = 0)
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What is the uplift for a given individual ?

X = (xi )1≤i≤n

Y = 1

Y = 0

Y = 1

Y = 0

A

B

Treatment group: T=1

Control group: T=0

X

Classical uplift modeling:

E[Yi = 1|Xi ,Ti = 1]− E[Yi = 1|Xi ,Ti = 0]
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Segmentation of the population

Given the outcome and the counter-factual outcome

• Responder positive outcome if treated (negative otherwise)

• Survivor positive outcome (whatever the treatment)

• Doomed negative outcome (whatever the treatment)

• Anti-responder negative outcome if treated (positive

otherwise)

Consequences

• Unknown counter-factual outcome but partial information

available

• Whole population modelled as a mixture of sub-populations

From a counter-factual problem to density estimation with missing

data

13
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Observed outcome and constraints on the distributions

xi

Yi = 1 → Responder

Yi = 0

Yi = 1

Yi = 0 → Responder

Treatment group

Ti = 1

X
Control group

Ti = 0
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Observed outcome and constraints on the distributions

xi

Yi = 1 → Survivor

Yi = 0

Yi = 1 → Survivor

Yi = 0

Treatment group

Ti = 1

X
Control group

Ti = 0
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Observed outcome and constraints on the distributions

xi

Yi = 1

Responder + Survivor

Yi = 0

Doomed + Anti-responder

Yi = 1

Survivor + Anti-responder

Yi = 0

Responder + Doomed

Treatment group

Ti = 1

X
Control group

Ti = 0
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Density estimation for uplift modelling

Cost function : the log-likelihood

L({xi}, fR , fS , fD , fA) =
n∑

i=1

∑
g∈{R,S,D,A}

tig log fg (xi )

• tig membership level of xi to the group g

• fg density distribution of the group g (among Responder,

Survivor, Doomed, Anti-responder)

On the way to a solution

• in a parametric model tig and θg (parameter of fg ) are

estimated

• EM algorithm is adapted to this problem of missing data

• compared to a mixture of distributions, we have some partial

information
15



A parametric density estimation : MoG

Gaussian mixture
model estimation

P(Y = 1|X = x ,T = 1)− P(Y = 0|X = x ,T = 0)
= P(R|X = x)− P(A|X = x)

⇒
argmax

∑n
i=1

∑
g∈{R,S ,D,A} tig log(πgNg (xi , µg ,Σg )

16



Observed outcome and constraints on the distributions

xi

Yi = 1

Responder + Survivor

Yi = 0

Doomed + Anti-responder

Yi = 1

Survivor + Anti-responder

Yi = 0

Responder + Doomed

Treatment group

Ti = 1

X
Control group

Ti = 0
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Constrained EM for MoG

Constraints on the distribution

T Y P(R) P(D) P(S) P(A)

1 1 . 0 . 0

1 0 0 . 0 .

0 1 0 0 . .

0 0 . . 0 0

Constrained EM

• E-step (including a

projection)
-if Yi (1) = 1 then tiD = tiA = 0

-if Yi (1) = 0 then tiR = tiS = 0

-if Yi (0) = 1 then tiD = tiR = 0

-if Yi (0) = 0 then tiS = tiA = 0

- else tig =
p(xi ,θ

c
g )∑

j∈{R,D,S,A}p(Xi ,θ
c
j

)

• M-step
πg = 1

n

∑n
i=1 tig

µg =
∑n

i=1 tig xi∑n
i=1 tig

Σg =
∑n

i=1 tig (xi−µg )(xi−µg )T∑n
i=1 tig
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Some numerical results : toy data I

(a) Data distribution (b) Real uplift heatmap (c) Two classifiers

(d) Z transformation (e) EM uplift (f) V-EM uplift

Figure 1: Close but separable Gaussian distributions (Synthetic 1)
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Some numerical results : toy data II

(a) Data distribution (b) Real uplift heatmap (c) Two classifiers

(d) Z transformation (e) EM uplift (f) V-EM uplift

Figure 2: Separable (but challenging) Gaussian distributions (Synthetic

2)
20



Some numerical results : toy data III

(a) Data distribution (b) Real uplift heatmap (c) Two classifiers

(d) Z transformation (e) EM uplift (f) V-EM uplift

Figure 3: Overlapping Gaussian distributions (Synthetic 3)
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Constraints in preference

aggregation



Application to computational social choice

Computationnal Social Choice

• at the interplay of social choice, computer science and

multi-agents systems

• analyse the aggregation of preferences of a group of agents

• voting systems are the most common object of interest of the

field (but not the only one : ranking, ressource allocation,

crowdsourcing etc...)

The epistemic case

• votes considered as the realization of a random variable

• the probability distribution over the set of possible ballots is

called a noise model

• aggregation is expressed as a Maximum Likelihood problem

22



Multi-winner approval voting
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Example: Chord Transcription

Figure 4: Guitar Chords Transcription

A guitar chord contains at least 3 and at most 6 notes.
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Problem Statement

Formally, we consider:

• A set of m alternatives X = {a1, . . . , am}: {A, A#, B, C,

C#, D, Eb...}
• A ground truth subset of alternatives S∗ ⊆ X: C7 = {C,

E, G, B}
• A set of n voters N

• A profile of n ballots Ai ⊆ X: {C, E, G}, {C, Eb, E, G},
{A, C, E}

(+) Prior knowledge: l ≤ |S∗| ≤ u for some l , u known to the

central entity.

(+) Noise model.

25



Noise Model

The noise model will incorporate two types of errors:

P(a ∈ Ai |S∗ = S) =

{
pi if a ∈ S TP

qi if a /∈ S FP

We also suppose that:

(1) A voter’s approvals of alternatives are mutually independent

given the ground truth and parameters (pi , qi )i∈N .

(2) Voters’ ballots are mutually independent given the ground

truth.

26



Noise Model

The noise model will incorporate two types of errors:

P(a ∈ Ai |S∗ = S) =

{
pi if a ∈ S TP

qi if a /∈ S FP

We also suppose that:

(1) A voter’s approvals of alternatives are mutually independent

given the ground truth and parameters (pi , qi )i∈N .

(2) Voters’ ballots are mutually independent given the ground

truth.

26



The Likelihood (A Posterioi)

For now, our aim is to estimate the ground truth via Maximum a

Posteriori:

Ŝ = arg max
S⊆X

P(S)× P(A1, . . . ,An|S) = arg max
S⊆X

P(S)
n∏

i=1

P(Ai |S)

where:

P(Ai |S) = p
|Ai∩S |
i q

|Ai∩S|
i (1− pi )

|Ai∩S|(1− qi )
|Ai∩S|

27



General Model

We suppose that:

• Voters answer multiple questions.

• The parameters (pi , qi ) are unknown.

• The prior P(S) is not uniform, but parameterized via

t = (t1, . . . , tm) such that:

P(S) =


1

β(l ,u,t)

∏
aj∈S

tj
∏
aj /∈S

(1− tj) if S ∈ Sl ,u

0 if S /∈ Sl ,u

where:

β(l , u, t) =
∑

S∈Sl,u

∏
aj∈S

tj
∏
aj /∈S

(1− tj)
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Alternating Maximum Likelihood Estimations - Lloyd Heuristic

29



AMLE: Alternating Maximum Likelihood Estimations

To maximize the dataset’s likelihood we proceed as follows

(AMLE):

• Initialize (p̂
(0)
i , q̂

(0)
i ), (t̂

(0)
j ).

• Alternate between:

• Estimating the ground truth given the parameters.

• Estimating the parameters given the ground truth.

Theorem

For any initial values (p̂
(0)
i , q̂

(0)
i ), (t̂

(0)
j ), AMLE increases the

likelihood at each step, and it converges to a fixed point after a

finite number of iterations.
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Data Collection

Figure 5: 15 football images
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Data Collection

Figure 6: Image annotation datasets

We gathered the answers of 76 participants

32



0-1 Subset Accuracy with Different Groups of Voters

10 20 30 40 50 60 70
Number of voters

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0-
1 

Ac
cu

ra
cy

AMLE_c
AMLE_f
Modal
Majority

(a) 0/1 accuracy
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Geometry for structured data



A problem of interest

Fréchet1 averaging
Let (S , d) be a complete metric space. Let x1, · · · , xn ∈ S , then,

we define the problem of as :

min
m∈S

n∑
i=1

d2(xi ,m)

Properties

• weighted variants exist and it can be extended for clustering

• invariances can be incorporated through d

• m? is a representative point of the dataset and it belongs to S

1It is also sometimes referred as Karcher mean for Riemannian manifolds.

34



(Strictly) definite-positive matrices

0

0.5

1

1.5 0 0.2 0.4 0.6 0.8 1 1.2

−1.5

−1

−0.5

0

0.5

1

1.5

ba

c

C =

∣∣∣∣∣a b

b c

∣∣∣∣∣
ac − b2 > 0

• Euclidean distance : δ2
E (A,B) = ||A− B||2F

interpolation is possible but to the cost of the swelling effect.

• Riemannian distance (AIRM) :

δ2
R(A,B) = || log(A−

1
2BA−

1
2 ||2F .

interpolation and extrapolation without any swelling effect.

• LogEuclidean distance : δ2
L(A,B)R = || logR(A)− logR(B)||2F 35



Where do we find those matrices ?

Classical ways of extracting features for EEG data

• signal energy-based features (for Motor Imagery, SSVEP,...)

• sample based features (for ERP)

Covariance-based features
X ∈ Rn×s a an epoch of signal and T ∈ Rn×s a template

• spatial covariance matrix: Cs = 1
sXX

> - with the

variance/power of electrodes on the diagonal,

• template-signal covariance: CT =

(
TT> TX>

XT> XX>

)

• filtered signal covariance: Cf =

 Xf1X
>
f1
· · · Xf1X

>
fF

...
. . .

...

XfFX
>
f1
· · · XfFX

>
fF


with the Xf filtered versions of the original signal. 36



Where it all started from

A new golden standard

• introduced in Multi-class Brain Computer Interface

Classification by Riemannian Geometry, A. Barachant, S.

Bonnet, M. Congedo, C. Jutten, IEEE TBME (2012)

• average improvement of 5% (from 65.1% to 70.2%) on the

BCI competition IV (dataset IIa) over SOTA (CSP + LDA)

• introduction of MDRM (Minimum Distance to the

Riemannian Mean) and Tangent Space Linear Discriminant

Analysis (TSLDA)

37



Riemannian PCA as a variant of Fréchet averaging

From Pn to Pm - geometry-aware dimensionality reduction

• ∀W ∈ Rn×m (full column rank), ∀i , W>CiW ∈ Pm
• similar (in spirit) to previous work with a nice flavour of

dimensionality reduction

• based on the maximization of a generalization of the notion of

variance (without any invariance)

max
W

∑
i

δ2
R

(
W>CiW ,W>C̄W

)

38



Taxonomy for missing data problems

Types of missing data

a missing samples / observations in matrix X

b missing variables / channels in matrices X and Σ = 1
nXX

>

(under the hypothesis that X is centered)

c missing elements (at random) in the matrix Σ

39
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Riemannian geometry with missing data

Setup

• when a whole channel of EEG is noisy/missing, then the

spatial covariance matrix is badly affected (on the

corresponding row and columns)

• in a Riemannian framework, the whole covariance would be

discarded (which is bad in a case of scarse data as in BCI)

• the trusted information in a matrix C with S the set of the

indices of retained channels can be written as :

Ĉ = M>CM

with M a matrix of mask (i.e., an identity matrix with only

the columns indexed by S) - a submatrix of C

How to use the Riemannian geometry in this context ? 40



Handling missing data as a variant of Fréchet averaging

A Féchet average with missing data
With a (possibly) different mask for each covariance :

min
X

∑
i

δ2
R(M>i CiMi ,M

>
i XMi )

• encouraging early results on synthetic experiments (channels

are hidden randomly on a clean dataset)

• potential application for transfer learning between datasets

recorded with different sets of electrodes

• possibly generalised to other loss functions

• generalization to any orthonormal matrix M>i Mi = Ip for

compressing sensing approach on covariance matrices

41



Working with graph data

Setup

• dataset made of graphs (for which the ordering of the labels is

unknown)

• each graph is represented with its adjacency matrix Ai (or its

laplacien Li ), D = A1, · · · ,An

• not completely unrelated to previous work : another instance

of non-Euclidean data (e.g. covariance as weighted graphs)

dm(A,B) = min
P∈Pm

||P>AP − B||2F

• comparing 2 observations leads to an NP-hard problem (graph

isomorphism)

42



Fréchet averaging of graph data

Formulation

• another instance of Fréchet averaging, with ∀i , Pi ∈ Pm :

min
P1,··· ,Pn,B

∑
i

||P>i AiPi − B||2F

• relaxation from the set of permutation matrices Pm to the set

of bi-stochastic matrices Bm (permutation matrices are

obtained through sampling) and the elements of B are then

naturally in [0, 1]

problem convex in Pi and B (for some formulation)
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Fréchet averaging of graph data

Formulation

• another instance of Fréchet averaging, with ∀i , Pi ∈ Pm :

min
B

∑
i

min
Pi

||P>i AiPi − B||2F︸ ︷︷ ︸
d2
m(Ai ,B)

• relaxation from the set of permutation matrices Pm to the set

of bi-stochastic matrices Bm (permutation matrices are

obtained through sampling) and the elements of B are then

naturally in [0, 1]

problem convex in Pi and B (for some formulation)

43



Algorithm

Adapt the alternate optimization by tuning the number of

optimization steps in the inner and outer loops

optimize w.r.t B optimize w.r.t P

inner loop

outer loop

44



Results

Properties

• the learned weighted graphs has a nice probabilistic

interpretation

• underlying generative model (generalized ERG)

Potential extension

• each graph can have a different size (as each Pi can compress

the graph to a given size)

• relaxing on orthogonal matrices (instead of bistochastic) could

enable to learn an embedding for each graph (at the cost of

the probabilistic interpretation of the learned average)
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Conclusion



Many thanks to my collaborators

• Application to counterfactual learning : Céline Béji & Jamal

Atif (ESANN 2020)

• Application to epistemic social choice : Tahar Allouche &

Jérôme Lang (UAI 2022)

• Riemannian PCA : Inbal Horev & Masashi Sugiyama (ACML

2015)

• RG with missing data : Quentin Barthélemy, Sylvain

Chevallier & Suvrit Sra (ACML 2020)

• Graph averaging : Nicolas Boria & Benjamin Negrevergne

(ESANN 2020)
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Wrap up

Take home message

• There are many (sometimes surprinsingly simple) ways to

incorporate prior knowledge or structural constraints on data

• Riemannian geometry is a practical tool for many problems

with a rich theory for optimization and many libraries

What’s next ?

• from metric learning on non-Euclidean data to dictionary and

then deep models

• potential methodological pitfall (scarse data for deep models)

• averaging trajectories on manifold (for modelling dynamic in

EEG or fatigue)
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The end
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Dictionary learning on graphs

graph dataset

dictionary of 
  subgraphs

vector representation
       of the graphs

    graph coding 
on the dictionary

graph dictionary
      learning

1

1

1
0

0 0

0

0
2

1 1

1

1
0

0

Graph dataset

Graph dictionary 
learning

Graph coding on 
the dictionary

Vector 
representation 
of graphs

Dictionary of subgraphs
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A well-known manifold

Intuitions :

• ”curved” subspace of

RN

• locally approximated

by hyperplanes (i.e.

maps)

• from one point to

another through

geodesics



Different manifolds

A russian doll structure

• topological manifold

• + differentiable

structure

(differentiable

manifold)

• + riemannian metric

(Riemannian

manifold)

Summary : a curved space can locally be linearly approximated.



Local approximation

Tangent space TX0M
For M, at X0 :

• the set of gradients at X0 of

every curve γi (t) passing

through this point (tangent

plane)

• equipped with a scalar

product (riemannian

metric).



Riemannian distance

• the lenght of a curve is

deduced by integrating the

norm of its gradient in the

tangent spaces

Lg (γ) =

∫ b

a
||γ′(t)||gdt

• depends on the chosen

geometry (i.e. the

riemannian metric)
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Exp/Log map

Exponential map
The exponential map sends points from a given tangent plan to the

manifold. γv (t) is the geodesic from p with initial acceleration v

TpM→M
expp(v) = γv (1)

Logarithmic map
The logarithmic map flattens the manifold around one point (i.e.

the tangent plan tangent at this point).

Remarks

• back and forth between a manifold M and (euclidean) TpM
• usually computationally expensive operations (retractions).



Goings and comings between a manifold and a tangent plane



Riemannian optimization in one slide

Key step

1. (euclidean) gradient

2. projection on the

tangent plan

(riemannian gradient)

3. exponential map (or

retraction)

Philosophy of this approach
Move on a geodesic in the direction of the gradient (i.e. geodesic

minimising the cost).



Bestiary of manifolds

Stiefel St(p, n) = {X ∈ Rn×p : X>X = Ip}
ex : the sphere : St(1, 3)

orthogonal group O(p) = {X ∈ Ip×pp : X>X = Ip}
ex : O(p) = St(p, p)

dp matrices Pn = {X ∈ Rn×n : X � 0}
ex : covariance matrices

and many others...
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dp matrices Pn = {X ∈ Rn×n : X � 0}
ex : covariance matrices

and many others...



Simple yet efficient approach I

MDRM

• algorithm

For each class j minXj∈Pn

∑
i∈Class j δ

2
R(Ci ,Xj)

• j independent problems of Fréchet/Karcher averaging

• prediction for C : argminjδ
2
R(C ,Xj)



Simple yet efficient approach II

TSLDA

• algorithm

compute M the Fréchet mean of the whole dataset of

covariances

map each covariance Ci to Si in TGPn with

logM(Ci ) = log(M−
1
2CiM

− 1
2 )

apply a simple LDA on the extracted feature

• interpretation in term of withening for M−
1
2CiM

− 1
2

• linearization of the manifold around M



A simpler framework

Sources extraction
via

subspaces method

EEG signals

Pre-processing
 (Low-pass filter, ...)

Decision rule

Classification
LDA, SVM, ...

Feature extraction
log, power...

Feature extraction
covariance
matrices

Classification
Riemannian kernel,

MDM ... 



Swelling effect
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Comparison of Euclidean and Riemannian
 interpolation along geodesics

Euclidean geometry
Riemannian geometry

It can occur that det(A+B
2 ) ≥ max(det(A), det(B)), which is an

artifact of the Euclidean framework.
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