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AI for Science: Prediction and Explanation

▶ Two goals in “AI for Science”: prediction and explanation.

Medical Image Trained AI Model
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Explanation
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Reliability in AI-Driven Science

▶ Quantifying the reliability of AI-driven predictions and discoveries is required.
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How can we quantify the reliability of explanation?
▶ Consider a linear model case:

y = β1x1 + β2x2 + · · ·+ βdxd

▶ Suppose we have the following parameter estimation result:

β̂3 = 3.4

▶ Statistical test for the coefficient β3

H0 : β3 = 0 v.s. H1 : β3 6= 0

▶ Statistical significance measures: p-values

p3 = PrH0

(
|β̂3| ≥ 3.4

)
▶ Interpretation (with the significance level, e.g., α = 0.05)

p3 < 0.05 ⇒ x3 is a reliable explainable feature

p3 ≥ 0.05 ⇒ x3 is not a reliable explainable feature
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Statistical Testing Framework for AI-Driven Hypotheses

▶ Consider quantifying reliability in the framework of statistical tests.

Trained AI Model Saliency Map Attention RegionTest Image (New Patient)

Reference Image (Normal)
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Statistical Testing Framework for AI-Driven Hypotheses

▶ Consider quantifying reliability in the framework of statistical tests.
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A Working Example

Step 1. We trained a neural network with training set, which includes 939 images 
with tumors and 941 images without tumor:
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A Working Example

Step 1. We trained a neural network with training set, which includes 939 images 
with tumors and 941 images without tumor:

Step 2. We input several test images to the trained network and conduct naïve two-
sample test without caring that the attention region is obtained by the network.
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Traditional Statistical Inference: Naive p-Values
Case with Real Tumor

Trained AI Model Saliency Map Attention RegionTest Image (New Patient)

Reference Image (Normal) Naïve p = 0.00
(True Positive)
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Selective Inference (Statistical Inference for Data-Driven Hypotheses): Selective p-Values
Case with Real Tumor

Trained AI Model Saliency Map Attention RegionTest Image (New Patient)

Reference Image (Normal) Selective p = 0.00
(True Positive)
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Selective Inference (Statistical Inference for Data-Driven Hypotheses): Selective p-Values
Case with Real Tumor

Case without Real Tumor

Trained AI Model Saliency Map Attention RegionTest Image (New Patient)

Reference Image (Normal) Selective p = 0.00
(True Positive)

Trained AI Model Saliency Map Attention RegionTest Image (New Patient)

Reference Image (Normal) Selective p = 0.78
(True Negative)
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The Messages in This Talk

▶ Why naive p-values are invalid for AI-driven hypotheses and how we interpret
and formulate this issue?

▶ How selective inference (a new trend in statistics for data-driven hypotheses)
resolve this issue?

▶ How we can compute selective p-values for deep neural network-driven
hypotheses?
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Hypothesis Selection Bias and Multiple Comparison
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Knowledge-Driven vs. Data-Driven Science

(Traditional）Knowledge-driven science
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Big data Data-driven
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Research
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Problem Formulation
▶ Goal: Identify the attention region in a medical image by a saliency method

(e.g., CAM).

Trained AI Model Saliency Map Attention RegionTest Image (New Patient)

Reference Image (Normal) Two-sample test

▶ An image is represented as an n-dimensional vector of pixel values X ∈ Rn as

Test Image: X︸︷︷︸
image

= s︸︷︷︸
signal

+ ε︸︷︷︸
noise

, ε ∼ N(0,Σ)︸ ︷︷ ︸
Normally-distributed noise

Reference Image: Xref︸ ︷︷ ︸
image

= sref︸︷︷︸
signal

+ εref︸︷︷︸
noise

, εref ∼ N(0,Σ)︸ ︷︷ ︸
Normally-distributed noise

▶ Algorithm (Trained Network) A

A︸︷︷︸
algorithm

: X︸︷︷︸
image

7→ MX︸ ︷︷ ︸
attention region
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Hypothesis Testing
▶ Mean Null Test

▶ Null Hypothesis H0 and Alternative Hypothesis H1

H0 :
1

|MX |
∑

i∈MX

si =
1

|MX |
∑

i∈MX

srefi vs. H1 :
1

|MX |
∑

i∈MX

si 6=
1

|MX |
∑

i∈MX

srefi

▶ Test statistic

∆X :=
1

|MX |
∑

i∈MX

Xi −
1

|MX |
∑

i∈MX

Xref
i

▶ Global Null Test

▶ Null Hypothesis H0 and Alternative Hypothesis H1

H0 : si = srefi ∀i ∈MX vs. H1 : si 6= srefi ∃i ∈MX

▶ Test-statistic

∆X =

√√√√√ ∑
i∈MX

(
Xi −Xref

i√
2σ

)2

▶ Statistical significance (two-sided p-value)

p = Pr

 |∆X |︸ ︷︷ ︸
random variable

≥ |∆Xobs
|︸ ︷︷ ︸

observation
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Multiple Testing / Hypothesis Selection Interpretation
▶ The data-driven hypothesis is interpreted as the result of multiple comparison

with all possible 2#pixels results.

vs.

vs.

vs.

vs.

p-value: p (A)

p-value: p (B)

p-value: p (C)

p-value: p (D)

hypothesis A

hypothesis B

hypothesis C

hypothesis D

Test
Instances

References
(Normal)

▶ Correction of the selection bias is indispensable in multiple comparison.
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Multiple Comparison

▶ In the context of traditional multiple hypothesis testing, only a handful of tests
are considered.

****

**

condition A condition B condition C

▶ In the context of genetic data analysis (2000∼), large-scale multiple comparison
with tens of thousands of hypotheses were considered.

▶ The number of all possible hypotheses that AI/ML can produce is much more
than the existing methods can handle.
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Three approaches for multiple comparison correction

▶ Family-wise error rate (FWER) control: controlling the probability of finding a
false positive (FP) < α (e.g., 0.05)

▶ False discover rate (FDR): controlling the expected proportion of discoveries
that are false < α (e.g., 0.05)

▶ Conditional selective inference (SI): controlling the probability of finding a FP
conditional on the hypothesis selection event < α (e.g., 0.05)
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Conditional Selective Inference (SI)
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Basic idea of conditional SI

▶ The key idea of conditional SI is to consider only the cases (parallel worlds)
where the same hypothesis is selected.

Data2 Algorithm Hypothesis B

Data3 Algorithm Hypothesis D

Observed
Data Algorithm Hypothesis BGenerator

Data4 Algorithm Hypothesis C

Data5 Algorithm Hypothesis A

Data1 Algorithm Hypothesis A

Data6 Algorithm Hypothesis B

▶ Intuitively, by considering only the randomness where the same hypothesis is
selected, the hypothesis selection bias disappears.
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the hypothesis selection bias disappears.
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Conditional SI for The Working Problem

▶ Ordinary statistical significance (p-value)

p = Pr

 |∆X |︸ ︷︷ ︸
random var.

≥ |∆Xobs
|︸ ︷︷ ︸

observation


▶ Conditional statistical significance (selective p-value)

p = Pr

 |∆X |︸ ︷︷ ︸
random var.

≥ |∆Xobs
|︸ ︷︷ ︸

observation

∣∣∣∣∣ MX =MXobs︸ ︷︷ ︸
the same attention region is selected
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Ordinary p-values vs. Selective p-values

▶ The ordinary p-values are too complicated to compute for data-driven
hypotheses obtained by complicated algorithms.

▶ The selective p-values are computable as long as the selection event of the
selected hypotheses are characterized in tractable way.

▶ The key idea of conditional SI is to decouple the “hypothesis selection” and
“statistical inference” so that the latter can be done as if the hypothesis is fixed.
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History of Conditional SI Research

▶ The notion of conditional inference has long been used in many problems and
known in the literature of statistics.

▶ Lee et al. [1] first proposed a computationally tractable conditional SI method
(Polyhedron-based SI) for Lasso.

▶ Inspired by this work, polyhedron-based SI for various other feature selection
methods were developed (e.g., [2, 3, 4, 5]).

▶ Polyhedron-based SI has been found useful for statistical inference of various
data-driven hypotheses other than feature selection (e.g., [6, 7, 8, 9])

▶ Conditional SI loses its power by over-conditioning — several approaches have
begun to be studied to resolve this problem (e.g., [10, 11,12,13]).
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Selective Inference for Lasso [1]

▶ Lee et al. [1] developed a SI framework when the selection event is
characterized by a set of linear inequalities in the form of

Ay ≤ b (for a certain matrix A and a vector b),

and found that the selection event for Lasso (ALasso) can be fit into this
framework:

{“selected features”← ALasso(y)} ⇔ Ay ≤ b.

23/36



Selective Inference for Lasso [1]

▶ Lee et al. [1] developed a SI framework when the selection event is
characterized by a set of linear inequalities in the form of

Ay ≤ b (for a certain matrix A and a vector b),

and found that the selection event for Lasso (ALasso) can be fit into this
framework:

{“selected features”← ALasso(y)} ⇔ Ay ≤ b.

23/36



Truncated Normal Distribution for Polyhedron-based SI

▶ When y ∼ N(µ,Σ) and the selection event is characterized by a polyhedron,

the conditional sampling distribution of β̂M,j is in the form of truncated
Normal distribution.
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Conditional Selective Inference for Deep Learning
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Problem Setup (Revisited)

Step 1. We trained a neural network with training set, which includes 939 images with 
tumors and 941 images without tumor:

Step 2a. We input several test images to the trained network and conduct naïve two-
sample test without caring that the attention region is obtained by the data.

Trained AI Model Saliency Map Attention RegionTest Image (New Patient)

Reference Image (Normal) Naïve p-value
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Problem Setup (Revisited)

Step 1. We trained a neural network with training set, which includes 939 images with 
tumors and 941 images without tumor:

Step 2b. We input several test images to the trained network and conduct selective 
two-sample test by properly caring that the attention region is obtained by the data.

Trained AI Model Saliency Map Attention RegionTest Image (New Patient)

Reference Image (Normal) Selective p-value
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Piecewise-Linear Network

▶ Most of the components in convolutional neural network (CNN) can be
represented or precisely approximated as piecewise-linear functions.

threshold

Convolution
ReLU Max-pooling Up-sampling Convolution

Thresholding
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Piecewise-Linear Network

▶ Most of the components in convolutional neural network (CNN) can be
represented or precisely approximated as piecewise-linear functions.

threshold

Convolution
ReLU Max-pooling Up-sampling Convolution

Thresholding

>> 0 < 0or > threshold
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Selection Event by Piecewise-Linear Functions

▶ A selection event characterized by finite number of piecewise-linear functions
looks like:

Input Vectors
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Result (1)

Trained AI Model Saliency Map Attention RegionTest Image (New Patient)

Reference Image (Normal)

Trained AI Model Saliency Map Attention RegionTest Image (New Patient)

Reference Image (Normal)

Naïve p = 0.00
(True Positive)

Selective p = 0.00
(True Positive)

Cases with Real Tumor (Global Null Test / Single Reference)
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Result (2)

Trained AI Model Saliency Map Attention RegionTest Image (New Patient)

Reference Image (Normal)

Trained AI Model Saliency Map Attention RegionTest Image (New Patient)

Reference Image (Normal)

Naïve p = 0.00
(True Positive)

Selective p = 0.00
(True Positive)

Cases with Real Tumor (Mean Null Test / Single Reference)
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Result (3)

Trained AI Model Saliency Map Attention RegionTest Image (New Patient)

Reference Image (Normal)

Trained AI Model Saliency Map Attention RegionTest Image (New Patient)

Reference Image (Normal)

Naïve p = 0.00
(False Positive)

Selective p = 0.78
(True Negative)

Cases without Real Tumor (Global Null Test)
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Result (4)

Trained AI Model Saliency Map Attention RegionTest Image (New Patient)

Reference Image (Normal)

Trained AI Model Saliency Map Attention RegionTest Image (New Patient)

Reference Image (Normal)

Naïve p = 0.00
(False Positive)

Selective p = 1.00
(True Negative)

Cases without Real Tumor (Mean Null Test)
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The Messages in This Talk (Revisited)

▶ Why naive p-values are invalid for AI-driven hypotheses and how we interpret
and formulate this issue?

▶ How selective inference (a new trend in statistics for data-driven hypotheses)
resolve this issue?

▶ How we can compute selective p-values for deep neural network-driven
hypotheses?
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Summary

▶ The reliability of data-driven hypotheses cannot be properly evaluated by
traditional statistical methods.

▶ AI-based scientific discovery can be interpreted as a large-scale multiple testing
problem where conventional methods cannot be applied.

▶ Conditional Selective Inference (SI) is a potentially useful tool for correcting the
selection bias of data-driven hypotheses.

▶ Conditional SI is casted into the problem of finding a subset of parametrized
datasets that outputs the same hypothesis (inverse problem).

▶ Conditional SI can be extended to handle an algorithm that can be decomposed
into piecewise-linear component.

▶ Many (seemingly) complicated algorithm (including CNN) can be decomposed
into piecewise-linear components, which enables us to employ conditional SI.
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