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Supervised Learning
under Distribution Shift

Given: 
 Training data 

Goal: 
 Learn predictor                   that works well in the test domain

(with some additional data from the test domain).

 Challenge: 
 Overcome changing distributions!

Non-stationary of the environments.
Sample selection bias due to privacy concerns.
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Quiñonero-Candela, Sugiyama,
Schwaighofer & Lawrence (Eds.),
Dataset Shift in Machine Learning,
MIT Press, 2009.

NeurIPS DistShift Workshop in 2021/2022
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Types of Distribution Shifts

 Joint distribution shift:
 Covariate shift:
 Class-prior shift:
 Output noise:
 Class-conditional shift:

5

Training

Test

Positive

Negative

Class 1
Class 2

Class 3

: Input : Output



 Covariate shift: Only input distributions change.

6Basics: Importance-Weighted Training
Shimodaira

(JSPI2000)
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Direct Importance Estimation
Given: training and test input data

 Kernel mean matching:
 Match the means of               and

in characteristic reproducing kernel Hilbert space     .

 Least-squares importance fitting (LSIF):
 Fit a model           to           by least squares:
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Huang, Smola, Gretton, Borgwardt
& Schölkopf (NeurIPS2006)

: kernel 

Kanamori, Hido & Sugiyama
(NeurIPS2008, JMLR2009)



Classics: Two-Step Adaptation
1. Importance weight estimation (e.g., by LSIF):

2. Importance-weighted predictor training:

 However, estimation error in Step 1
is not taken into account in Step 2.
 We want to integrate these two steps!
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Sugiyama & Kawanabe
(MIT Press 2012)
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Joint Weight-Predictor Optimization
Given: Labeled training data and unlabeled test data

 Risk upper bound:

 Joint minimization

 Classic approach corresponds to 2-step minimization.
 Theoretical convergence guarantee:
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Zhang, Yamane, Lu & Sugiyama (ACML2020, SNCS2021)

 IW training

 LSIF



Experiments

One-step method outperforms two-step methods!
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Yamada, Suzuki, Kanamori, Hachiya
& Sugiyama (NIPS2011, NeCo2013)

Shimodaira (JSPI2000)



Dynamic Importance Weighting

 Full distribution shift:

 Suppose we are given
 Labeled training data:
 Labeled test data:

 For each mini-batch                                          , 
importance is estimated by kernel mean matching:

 Simple, but highly flexible!
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Fang, Lu, Niu & Sugiyama (NeurIPS2020)



Experiments

Dynamic method outperforms other methods.
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Continuous Distribution Shift
 So far, we focused on a fixed test domain:

 We trained a predictor to match the test domain.
 However, test domains can change over time.

Goal: Obtain classifier     that works well for            . 
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Continuous Class-Prior Shift
 Class-priors          change arbitrarily over time, 

but class-conditionals stay unchanged:

 Assume we are given
 Labeled training data:
 Unlabeled test data:
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…
Training test



Batch Importance Weighting

 At time step   ,          can be estimated
by implicit distribution matching
(no density estimation is needed):

 Perform importance weighted training:
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du Plessis & Sugiyama (NN2014)



ATLAS: (Adapting To LAbel Shift)

 Batch importance weighing requires retraining
in each time step.

 Can we make it computationally more efficient?
 Online learning!

We use online convex optimization, assuming
 convex loss    (e.g., logistic),
 linear model                                .

We use black box shift estimation for class priors.
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Hazan (2016)

: step size

: projection

Bai, Zhang, Zhao, Sugiyama & Zhou (NeurIPS2022)

Lipton, Wang & Smola (ICML2018)



Choice of Step Size 

 If distribution shift is
 slow,    should be small to keep the previous classifier.
 fast,     should be large to quickly update the classifier.

 How do we choose    in practice?
 Ensemble learning!

 For                           , we run      learners:

 Final output is the weighted average (cf. Hedge):
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Zhao, Zhang, Zhang & Zhou (NeurIPS2020)

Freund & Schapire (JCSS1997)



Theoretical Guarantee

 Shift intensity:

When      is known:
 Simple online learning with step size

achieves the optimal dynamic regret:

 Even when      is unknown:
 ATLAS still achieves the optimal dynamic regret!

Number of learners:

Step size: 
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Suppose

for simplicity



Experiments

 Lin: Nearly stationary
 Comparable to methods designed for stationary environments.
 Squ: Highly non-stationary
 Overperforms all baselines.
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Online Covariate Shift Adaptation

To be presented soon!
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Zhang, Zhang, Zhao & Sugiyama (arXiv2023)

A new method for continuous covariate shift via online density ratio estimation

online estimation of time‐varying 
density ratio

Importance‐weighted (IW) ERM

𝑟௧ሺ𝑥,𝑦ሻ

initial data

Classifier  𝐰ෝ𝒕IWERM
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Summary
 Importance weighting: versatile for transfer learning

 However, the training domain must cover the test domain.
What if the test domain sticks out

from the training domain?
 Input domain matching
 Mechanism transfer

 Further development needed!
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Ben-David, Blitzer, Crammer & Pereira (NIPS2006)
Ganin & Lempitsky (ICML2015)

Independent 
components

“Mechanism”

Observed
data

Teshima, Sato & Sugiyama (ICML202



Online Adaptation in Practice

 In real-world application,
 Updating the system immediately

after receiving new data is dangerous
since new data can be malicious.

 The system may be updated periodically
(daily, weekly, monthly, etc.).

 The latest data may be incorporated
in a temporary memory
(e.g., 4000 tokens in ChatGPT).
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