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Supervised Learning 2
under Distribution Shift

1.1.d.
o) Y R p (e, )

Given:

x: Input
e Training data {(x P

Y . Output
Goal:

e Learn predictor y = f(a) that works well in the test domain
(with some additional data from the test domain).

minf R(f) R(f) — Epte(ic,y) [E(f(a:),y)] ¢ . loss

Challenge:
e Overcome changing distributions!

Ptr ('/Ba y) # pte(ma y)

B Non-stationary of the environments.
B Sample selection bias due to privacy concerns.
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NIPS Workshop on Learning when Test and Training Inputs Have

Different Distributions, Whistler 2006

Workshop

Learning when test and training inputs have different distributions

Joaquin Quifionero Candela - Masashi Sugiyama - Anton Schwaighofer - Neil D Lawrence

Sat Dec 09 05:00 PM —- 05:00 PM (JST) @ Nordic

Event URL: http://ida first.fraunhofer.de/projects/different06/ »
Many machine learning algorithms assume that the training and the test data are drawn from the same
distribution. Indeed many of the proofs of statistical consistency, etc., rely on this assumption. However, in
practice we are very often faced with the situation where the training and the test data both follow the same
conditional distribution, p(y|x), but the input distributions, p(x), differ. For example, principles of experimental
design dictate that training data is acquired in a specific manner that bears little resemblance to the way the
test inputs may later be generated. The aim of this workshop will be to try and shed light on the kind of
situations where explicitly addressing the difference in the input distributions is beneficial, and on what the
most sensible ways of doing this are.
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DATASET SHIFT IN
VIACHINE LEARNING Quifionero-Candela, Sugiyama,

- | Schwaighofer & Lawrence (Eds.),
wd  Dataset Shift in Machine Learning,

MIT Press, 20009.

Y JOAQUIN QUIRONERD-CANDELA, MASASHI SUGIYAMA,
ANTON SCHWAIGHDFER, AND NEIL 0. LAWRENCE

Learning when Training and Test Inputs Have Different

Distributions
Saturday December 9, 2006

Org: Joaquin Quifionero-Candela, Anton Schwaighofer, Neil Lawrence & Masashi Sugiyama

Morning session: 7:30am—10:30am

7:30am

7:40am

8:10am

8:40am

8:50am

9:20am

9:50pm

10:10am

Opening, The organizers
When Training and Test Distributions are Different: Characterising Learning
Transfer, Amos Storkey, University of Edinburgh

Can Adaptive Regularization Help?,
Marthias Hein, Max Planck Institute for Biological Cybernerics

coffee break
Learning Classifiers in Distribution and Cost-sensitive Environments,
Nitesh Chawla, University of Notre Dame

Optimality of Bayesian Transduction - Implications for Input Non-stationarity,
Lars Kai Hansen, Technical University of Denmark

Estimating the Joint AUC of Labelled and Unlabelled Data,

Thomas Gérmer, Gemma Garriga, Thorsien Knopp, Peter Flach and Stefan Wrobel
A Domain Adaptation Formal Framework Addressing the Training/Test
Distribution Gap,

Shai Ben-David, University of Waterloo and John Blitzer, University of Pennsylvania

Afternoon session: 3:30pm—6:30pm

3:30pm

4:00pm

4:20pm

4:50pm

S:00pm

NeurlPS DistShift Workshop in 2021/2022

S:40pm

Projection and Projectability,
David Corfield, Max Planck Institure for Biological Cybernerics

Using features of probability distributions to achieve covariate shift,
Arthur Gretton, MPI for Biol. Cyb. and Alex Smola, National ICT Australia

Active Learning, Model Selection and Covariate Shift,
Masashi Sugivama, Tokyo Institute of Technology

coffee break

Visualizing Pairwise Similarity via Semidefinite Programming,
son, MIT, and Sam Roweis, Universiry of Toronto

e Prior for Adaptive Learning,
leff Bilmes, University of Washington

discussion, everyone
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Types of Distribution Shifts

Z:Input Y : Output

Joint distribution shift: e (®, y) # pre(, y)

Covariate shift: ptr(T) # pre(T)
Class-prior shift: Per(y) # Pre(y)
Output noise: Per(y|x) # pre(ylT)
Class-conditional shift:  per(@|y) # pre(x|y)

p(y|m) Pos[tive Class 2
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Basics: Importance-Weighted Training ©

Covariate shift: Only input distributions change. 552000,

ptr(m) -+ pte(m) ptr(yla?) — pte(yla’:) : Input Y : Output

argmm [ZE o) } argmm [Z Pee(; 5 "),y )
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Ordinary training Importance-weighted
IS not consistent training is consistent



Direct Importance Estimation
Given: training and test input data
@y R pa(@) {25 N pre ()
Kernel mean matching: G ot (o Sa008)
e Match the means of w(x)pi.(x) and pte(T)

in characteristic reproducing kernel Hilbert space H .
2

weH |/K JPre(® dw—/K % )pu(e)dz ,, - kernel
Least-squares importance fitting (LSIF):
e Fit a model w(x) to Z“jgmg by least squares:
2 . :
g | [ ()~ 228 ) moteras| SRS

_ argmin [ / w(@)2py, (2)de — 2 / w(m)pte(m)dm]

w



Classics: Two-Step Adaptation 8

Importance weight estimation (e.g., by LSIF):

~ 2
”L/l} — a,rgmin ]Eptr(m) (’LU(.’L') g:i gwg)

Importance-weighted predictor training:

f: argmin Eptr(m,y)[@(m)g(f(m)a y)]

Sugiyama & Kawanabe
f (MIT Press 2012)

However, estimation error in Step 1
is not taken into account in Step 2.

e \We want to integrate these two steps!
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Joint Weight-Predictor Optimization 10

Zhang, Yamane, Lu & Sugiyama (ACML2020, SNCS2021)

Given: Labeled training data and unlabeled test data

= e, id.d. _iid.
{( €L; 7y'1,) fi;l ~ ptl‘(wvy) {wt'e}?tZI ~ pte(l')

Risk upper bound: Ju (f,w) > 2Ry(f)?

Rf(f) Ept (x,y) [ﬁ(f(a:),y)] ¢ < 1,6, >/

Joint minimization min Jy(f, w)
feF,w>0

2
(fv ) pt () [(w(m) — g:gz;) ] < LSIF
"‘(Eptr(w,y) (w(x)l'(f(x), y)])z < IW training
e Classic approach corresponds to 2-step minimization.

Theoretical convergence guarantee: 7= argmin min Jor(w, f)
B feF w
Ro(f ) = \/_%12 Re(f)+ O (ntr1/4 + tel/4)



Experiments R

Table 3 Mean test classification accuracy averaged over 5 trials on image datasets with
neural networks. The numbers in the brackets are the standard deviations. For each dataset,
the best method and comparable ones based on the paired t-test at the significance level 5%

are described in bold face.

Dataset Sh‘(f; IS"“ ERM EIWERM  RIWERM one-step
(2, 4) 81.71(0.17)  84.02(0.18) 84.12(0.06) J| 85.07(0.08)
Fashion-MNIST (2, 5) 72.52(0.54)  76.68(0.27) 77.43(0.29) || 78.83(0.20)
(2, 6) 60.10(0.34)  65.73(0.34)  66.73(0.55) }| 69.23(0.25)
(2, 4) 77.09(0.18)  80.92(0.32) 81.17(0.24) | 82.45(0.12)
Kuzushiji-MNIST (2, 5) 65.06(0.26)  71.02(0.50) 72.16(0.19) J| 74.03(0.16)
(2, 6) 51.24(0.30)  58.78(0.38)  60.14(0.93) § 62.70(0.55)
(pte(mgr) ) K pte(m)
por (2t Bpe () + (1 — B)pre()

Shimodaira (JSPI2000)

Yamada, Suzuki, Kanamori, Hachiya
& Sugiyama (NIPS2011, NeCo02013)

One-step method outperforms two-step methods!



Dynamic Importance Weighting 12

Fang, Lu, Niu & Sugiyama (NeurlPS2020)

Full distribution shift: pw(x,y) # pie(x, y)

Suppose we are given
e Labeled training data: {(x!", yi")}", "X pe (2, y)

. .

e Labeled test data: {(x5, yi®) e = Pe(T, y)

7

o

For each mini-batch {(&}", 7;") Y, {(&:°, 3:°) s,
Importance is estimated by kernel mean matching:

— N wl(f(@), g =Y U(f(E),T5)
Ny . Nte .
=1 7=1
e Simple, but highly flexible! - Pre(Zi", U;")

ptr(igrﬂ gfr)



Experiments 13

Table 4: Mean accuracy (standard deviation) in percentage on Fashion-MNIST (F-MNIST for short),
CIFAR-10/100 under label noise (5 trials). Best and comparable methods (paired 7-test at significance
level 5%) are highlighted in bold. p/s is short for pair/symmetric flip.

Noise

Clean

Uniform

Random

Iw

Reweight

DIW

F-MNIST

03p
04s
05s

71.05 (1.03)
73.55 (0.80)
73.55 (0.80)

76.89 (1.06)
77.13 (2.21)
73.70 (1.83)

84.62 (0.68)
84.58 (0.76)
82.49 (1.29)

82.69 (0.38)
80.54 (0.66)
78.90 (0.97)

88.74 (0.19)
85.94 (0.51)
84.05 (0.51)

88.19 (0.43)
88.29 (0.18)
87.67 (0.57)

CIFAR-10

03p
0.4s
0.5s

45.62 (1.66)
45.61 (1.89)
46.35 (1.24)

77.75 (3.27)
69.59 (1.83)
65.23 (1.11)

83.20 (0.62)
76.90 (0.43)
71.56 (1.31)

45.02 (2.25)
44.31 (2.14)
42.84 (2.35)

82.44 (1.00)
76.69 (0.57)
72.62 (0.74)

84.44 (0.70)

80.40 (0.69)
76.26 (0.73)

CIFAR-100

03p
04s
0.5s

10.82 (0.44)
10.82 (0.44)
10.82 (0.44)

50.20 (0.53)
46.34 (0.88)
41.35 (0.59)

48.65 (1.16)
42.17 (1.05)
34.99 (1.19)

10.85 (0.59)
10.61 (0.53)
10.58 (0.17)

48.48 (1.52)
42.15 (0.96)
36.17 (1.74)

53.94 (0.29)
53.66 (0.28)
49.13 (0.98)

Dynamic method outperforms other methods.
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Continuous Distribution Shift  1°

So far, we focused on a fixed test domain:
e \We trained a predictor to match the test domain.

However, test domains can change over time.

Training Test 1 Test 2 TestT
Pec(, y) pi(z, y) p2(x, y) pr(x,y)

Goal: Obtain classifier f; that works well for p:(x,v).
Ru(f) = Epymp [((f () y)] t=1.....T



Continuous Class-Prior Shift 16

Class-priors p:(y) change arbitrarily over time,
but class-conditionals stay unchanged:

pie(xly) = pe(x|y) t=1,....T

Assume we are given

e Labeled training data: {(x;",y;")} LRt P (T, )
e Unlabeled test data: (P MK ()
Training test




Batch Importance Weighting 17

du Plessis & Sugiyama (NN2014)

At time step t, p:(¥) can be estimated
by implicit distribution matching
(no density estimation is needed):

min  Div|py ()| q: ()]
Tl'(t) EAc—l

qt(x) = Zmﬁ”pn(wly)
=1

minﬁt . S - Pe\Y; )f tr tr
RAT) R = S R



ATLAS: (Adapting To LAbel Shift) 18

Bai, Zhang, Zhao, Sugiyama & Zhou (NeurlPS2022)

minﬁt(f) ﬁt(f) — i ir: ?\t( l;trr)
f Ntr T Pee (y;")

Batch importance weighing requires retraining
In each time step.

Can we make it computationally more efficient?
e Online learning!

O(f ("), 9"

Hazan (2016)
We use online convex optimization, assuming

e convex loss ¢ (e.qg., logistic),

} _nl
e linear model f(z) =6 =, 0€0O, Ilo : projection

011 =1lg [915 - nVRt(Ht)] n > 0 : step size

We use black box shift estimation for class priors.

Lipton, Wang & Smola (ICML2018)



Choice of Step Size n 19

1 Ter -~

Spl i [Ot - WVﬁt(Bt)} Ri(6) = — Z;t(é ))4?09T )

If distribution shift is

e slow, 7 should be small to keep the previous classifier.
e fast, n should be large to quickly update the classifier.

How do we choose 7 in practice?
e Ensemble learning! znao, zhang, zhang & Zhou (NeurlPS2020)

For 0 <m <---<nm,werun M learners:
0 =To [0 — 1, V(6]

Final output Is the weighted average (cf. Hedge):

Freund & Schapire (JCSS1997)

m) ~(m t—1 0
0, = Zp( )9 | pi™ o exp (—Ezﬁs(%m))) €=@( 11{\4)
s=1




Theoretical Guarantee 20

ey - : L Suppose 1
Shift intensity: Vo =) |Ipe(y) —p—1(@)ll1 Ve = 0(T~%)
F—9 for simplicity

When Vr Is known:

e Simple online learning with step size n=0O©(V21T"3)
achieves the optimal dynamic regret:

T T 7
E ZRt(Bt nggg R:(0)| = 0O (VTgT%)
L=l t=1

Even when V+ IS unknown:

e ATLAS still achieves the optimal dynamic regret!
® Number of learners: M =1 + [ log,(1 + 27)]

W Step size: Ny = Qm_lG’/\/i m=1,...,M




Table 3: Average error (%) of different algorithms on various real-world datasets. We report the mean and
standard deviation over five runs. The best algorithms are emphasized in bold. “e” indicates the algorithms that
are significantly inferior to ATLAS-ADA by the paired t-test at a 5% significance level. Here AT-ADA represents

Experiments

ATLAS-ADA (with OKM). The online sample size is set as N; = 10,

21

Lin Squ
FIX FTH FTFWH ROGD UOGD ATLAS AT-ADA FIX FTH FTFWH ROGD UOGD ATLAS AT-ADA
ArXiv ¢ 30.28 @28.18 2574 23.09 21.04 22.10 21.28 3035 26.72 02805 2444 2196 21306 20.80
+0.07  +0.28 =E(012] +0.20 £0.11 +0.09 +0.09 +0.06 +0.39 =1=() 2 (=t () 117 R == () () +0.06 +0.06
EuroSAT ° 1406 ell.16 e 078 e1256 7.04 e 7.19 7.13 e 1415 1022 ¢ 1026 e 891 e 730 e 6.97 6.81
+0.09  +0.11 QT2 =E 3T G0 T +0.10 +0.11 +0.11 +0.08 +0.06 £0.05 +0.07 +0.08 +0.06
MNIST ° 1.79 e 1.38 e 120 e 125 1.06 1.06 1.06 e 1.79 e 1.26 e |28 e 132 e 1.13 e 1.04 1.01
+0.02  £0.03 +0.02  £0.02 £0.02 +0.02 +0.02  +0.04  £0.03 +0.04  £0.04  £0.03 40.02 +0.04
Fashion ° 11.86 e 8.47 7.84 8.18 795 e 8.36 8.04 1192 e 824 e 835 e 8.63 e 842 e 8.05 .73
‘ +0.04  +0.07 +0.06  £0.07  £0.08 +0.07 +0.08  £0.09  +0.09 +0.07  £0.07  +0.04 +0.07 +0.05
CIFAR10 ° 20.77 o17.36 15.77 1845 1554 1577 15.62 20.77 e16.67 ¢ 1672 1740 1629 e]15.18 14.84
+0.12  +0.14 +0.12  £047 £0.15 =£0.11 +0.14  +0.08  £0.12 == 01l = O] +0.09 +0.07 +0.05
CINIC10  ® 33.98 e28.85 ¢ 26.87 3254 26.21 e 26.66 26.38 3399 27.99 ¢28.08 2858 27.00 2594 25.56
=032 =k (0T () E00 SN2 I5 O NEE( ]S =E0RIG sE(NI6N WEEOS6R=E (.00 £0.08  £0.09  £0.14 =008 ==(012

Lin: Nearly stationary
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Online Covariate Shift Adaptation 22

Zhang, Zhang, Zhao & Sugiyama (arXiv2023)

A new method for continuous covariate shift via online density ratio estimation

Time t=1 t=2 =3 t=4 t=5 t:G:At:T t=8 =9 )
Bl® L IL JL JL IL Il /j:” || I T |n|tia|data
B, @ 1 I I FL Il N
. L |
N:;] Oc = Zpe; Oy
online estimation of time-varying Importance-weighted (IW) ERM

density ratio r; () = p;(x) /pe: () Wy = arg miny,eyy >, 7(@) (w24, ;)

To be presented soon!
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Summary 24

Importance weighting: versatile for transfer learning
e However, the training domain must cover the test domain.

What if the test domain sticks out  pi(2,v)

<
from the training domain? Pur(, y) Pt
e Input domain matching Dy
e Mechanism transfer >

Further development needed! Die

Ptr

Independent q1 42 43 -+ {Tar

components

‘ “Mechanism” f{ﬂf f@“ f"ff f{?
—

Observed y‘ 3 y‘ ot y‘ N 1.
. . . data . x| 4 x| X oy
Ben-David, Blitzer, Crammer & Pereira (NIPS2006)
Ganin & Lempitsky (ICML2015) Teshima, Sato & Sugiyama (ICML20:




Online Adaptation in Practice

In real-world application,

e Updating the system immediately
after receiving new data is dangerous
since new data can be malicious.

e The system may be updated periodically
(daily, weekly, monthly, etc.).

e The latest data may be incorporated
In a temporary memory
(e.g., 4000 tokens in ChatGPT).

25



