Representation theory and optimization of neural networks

Taiji Suzuki University of Tokyo / AIP-RIKEN (Deep learning theory team)

THE UNIVERSITY OF TOKYO

21th/Mar/2023 RIKEN-AIP & PRAIRIE Joint Workshop 2023

Success of deep learning

Deep learning has shown great performances in the AI research field. \rightarrow Why?

Large language model

https://jalammar.c

animations/]

[Brown et al. "Language Models are Fe [ChatGPT. OpenAl2022]

SuperGLUE Performance

Generative models (diffusion models)

[Ho, Jain, Abbeel: Denoising Diffusion Probabilistic Models. 2020]

Stable diffusion, 2022.

Spatial" generated by Colorado State Fai 1st prize in digital a

Generated by NovelAI

AlphaGo/Zero

[Silver et al. (Google Deep Mind): Mastering the game of Go with deep neural networks and tree search, Nature, 529, 484-489, 2016]

Image recognition

[He, Gkioxari, Dollár, Girshick: Mask R-CNN, ICCV2017]

Outline

[Representation theory]

Minimax optimality of diffusion model Total variation distance and Wasserstein distance \blacktriangleright Avoids curse of dimensionality

[Kazusato Oko, Shunta Akiyama, Taiji Suzuki: Diffusion Models are Minimax Optimal Distribution Estimators. arXiv:2303.01861, 2023]

[Optimization]

- Mean field Langevin dynamics
 - ➢Unifying frame-work
 - (1) Time discretization, (2) Space discretization, (3)
 Stochastic gradient

[Taiji Suzuki, Atsushi Nitanda, Denny Wu: Convergence of mean-field Langevin dynamics: Time and space discretization, stochastic gradient, and variance reduction. 2023]

Minimax optimality of diffusion model

[Kazusato Oko, Shunta Akiyama, Taiji Suzuki: Diffusion Models are Minimax Optimal Distribution Estimators. arXiv:2303.01861, 2023]

Kazusato Oko (The University of Tokyo /RIKEN-AIP)

Shunta Akiyama (The University of Tokyo)

Diffusion model

「An astronaut riding a horse in a photorealistic style」

DALL-E: [Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, Ilya Sutskever: Zero-Shot Textto-Image Generation. ICML2021.] DALL-E2:[Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, Mark Chen: Hierarchical Text-Conditional Image Generation with CLIP Latents. arXiv:2204.06125]

Stable diffusion, 2022.

Jason Allen "Théâtre D'opéra Spatial" generated by <u>Midjourney</u>. Colorado State Fair's fine art competition, 1st prize in digital art category

Generated by NovelAI

Decoder : Diffusion model

[Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Song et al., 2020; Ho et al., 2020; Vahdat et al., 2021]

Forward process : Convert the target distribution to a noise distribution (e.g., Gaussian)

$$\mathrm{d}X_t = -X_t \mathrm{d}t + \sqrt{2}\mathrm{d}B_t$$

$$dY_t = (Y_t + 2\nabla \log(p_{\overline{T}-t}(Y_t))dt + \sqrt{2}dB_t$$

$$(Y_t \sim X_{\overline{T}-t})$$

Reverse process : Convert the noise distribution to the target distribution

[Vahdat, Kreis, Kautz: Score-based Generative Modeling in Latent Space. arXiv:2106.05931]

Forward process

Forward process:

$$dX_t = -X_t dt + \sqrt{2} dB_t$$

OU process

• Marginal distribution

$$p_t = \operatorname{Law}(X_t) \implies p_t(x) = \int N_0(y) \mu_t \frac{1}{\sigma_t^4(2\pi)^{\frac{3}{2}}} \sigma_t^2 x p \left(* p_0^{\frac{\|x - \mu_t y\|^2}{2\sigma_t^2}} \right) dy$$

where $\mu_t = \exp(-t), \ \sigma_t^2 = 1 - \exp(-2t).$

Reverse process

Reverse process: $\begin{array}{c} (unknown) \\ Y_0 \sim p_{\overline{T}} \\ (Unknown) \\ dY_t = (Y_t + 2\nabla \log(p_{\overline{T}-t}(Y_t)) dt + \sqrt{2} dB_t \\ \end{array}$ $\begin{array}{c} (Haussmann \& Pardoux, 1986] \\ \end{array}$

Approximated process (generative model): $\hat{V} = N(0, I)$

$$\begin{split} \hat{Y}_0 \sim N(0, I) & (N(0, I) \text{ is close to } p_{\overline{T}} \\ d\hat{Y}_t = (\hat{Y}_t + 2\hat{s}(\hat{Y}_t, \overline{T} - t))dt + \sqrt{2}dB_t \end{split}$$

Theorem (Girsanov's theorem; Chen et al. (2023))

If
$$\hat{Y}_0 \sim p_{\overline{T}}$$
, then
 $\operatorname{KL}(p_0 || p_{\hat{Y}_{\overline{T}}}) \leq \frac{1}{4} \int_0^{\overline{T}} \mathbb{E}_{Y_t}[\|\nabla \log(p_{\overline{T}-t}(Y_t)) - \hat{s}(Y_t, \overline{T}-t)\|^2] dt$

⇒ It suffices to estimate the score function $\nabla \log(p_t)$ as accurate as possible.

Score matching

$$\int_0^{\overline{T}} \mathbb{E}_{Y_t} [\|\nabla \log(p_{\overline{T}-t}(Y_t)) - \hat{s}(Y_t, \overline{T}-t)\|^2] dt$$
$$= \int_0^{\overline{T}} \mathbb{E}_{X_t} [\|\nabla \log(p_t(X_t)) - \hat{s}(X_t, t)\|^2] dt$$
$$= \int_0^{\overline{T}} \mathbb{E}_{X_t, X_0} [\|\nabla \log(p_t(X_t|X_0)) - \hat{s}(Y_t, t)\|^2] dt + (\text{const})$$

Observation (*n* data points
$$D_n = \{x_i\}_{i=1}^n$$
):
 $x_i \sim p_0$ $(i = 1, ..., n)$

Empirical score matching loss:

$$\min_{s \in \text{DNN}} \frac{1}{n} \sum_{i=1}^{n} \int_{t=\underline{T}}^{\overline{T}} \mathbb{E}_{X_t | X_0 = x_i} [\|s(X_t, t) - \nabla \log p_t(X_t | x_i)\|^2] dt$$
Can be sampled via OU process Explicit form is available

Existing work on error analysis ¹⁰

• Reverse SDE characterization: Song et al. (2021)

[Approximation error analysis]

- KL-divergence bound via Girsanov's theorem: Chen et al. (2022)
- Error bound with LSI: Lee et al. (2022a)
 With smoothness: Chen et al. (2022) and Lee et al. (2022b)
- Error propagation with manifold assumption: Pidstrigach (2022)

[Generalization analysis]

• Wasserstein dist bound $(n^{-1/d})$ with manifold assumption: De Bortoli (2022)

Problem setting

Assumption 1

The true distribution p_0 is supported on $[-1,1]^d$ and

$$p_0 \in B^s_{p,q}$$

with $s > (1/p - 1/2)_+$ as a density function on $[-1,1]^d$.

Assumption2

 \mathcal{P}_0 is sufficiently smooth on the edge of the support $[-1,1]^d \setminus [-1+n^{-\frac{1-\delta}{d}}, 1-n^{-\frac{1-\delta}{d}}]^d$.

Problem setting

Assumption 1

The true distribution p_0 is supported on $[-1,1]^d$ and

$$p_0 \in B^s_{p,q}$$

with $s > (1/p - 1/2)_+$ as a density function on $[-1,1]^d$.

Assumption2

 p_0 is sufficiently smooth on the edge of the support $[-1,1]^d \setminus [-1+n^{-\frac{1-\delta}{d}}, 1-n^{-\frac{1-\delta}{d}}]^d$.

Convergence rate result

Theorem (Estimation error in TV-distance)

Let $\underline{T} = n^{-O(1)}$, $\overline{T} = O(\log(n))$. Then, the empirical risk minimizer \hat{s} in DNN satisfies

$$\mathbb{E}_{D_n}\left[\mathrm{TV}(\hat{Y}_{\overline{T}-\underline{T}}, X_0)\right] \lesssim n^{-\frac{s}{2s+d}} \log^9(n).$$

This is minimax optimal, that is, it holds

$$n^{-\frac{s}{2s+d}} \lesssim \inf_{\hat{\mu}: \text{estimator}} \sup_{p_0} \mathbb{E}_{D_n} \left[\text{TV}(\hat{\mu}, X_0) \right]$$

Although $\hat{s}(x, t)$ is a function with d + 1-dimensional input, there appears "d" in the bound instead of d + 1. This is because Gaussian convolution induces smoothness.

Low dimensional structure

The estimated distribution is never absolutely continuous to the target distribution.

→ Wasserstein distance

*W*₁-distance convergence rate

Theorem (Estimation error in W1-distance)

For any fixed $\delta > 0$, by slightly changing the estimator, the empirical risk minimizer \hat{s} in DNN satisfies

$$\mathbb{E}_{D_n}\left[W_1(\hat{Y}_{\overline{T}-\underline{T}}, X_0)\right] \lesssim n^{-\frac{s+1-\delta}{2s+d'}}.$$

This is also known as minimax optimal (up to δ) [Niles-Weed & Berthet (2022)].

- *d'* appears instead of *d*: **Diffusion model can avoid curse of dimensionality**.
- The minimax rate of Wasserstein distance is <u>faster than that of TV distance</u>, which makes it difficult to establish the bound.

 \blacktriangleright We need more precise estimate of the score around t = 0.

(TV)
$$n^{-\frac{s}{2s+d}} \longrightarrow n^{-\frac{s+1}{2s+d}}$$
 (W1)

Mean field Langevin dynamics to optimize two-layer NN

[Suzuki, Nitanda, Wu: Convergence of mean-field Langevin dynamics: Time and space discretization, stochastic gradient, and variance reduction. 2023]

Atsushi Nitanda (Kyusyu Institute of Technology)

Denny Wu (University of Toronto)

Objective of mean field NN

Mean field Langevin dynamics:

$$\mathcal{L}(\mu) = F(\mu) + \lambda_2 \operatorname{Ent}(\mu)$$

convex

> Wasserstein gradient flow to minimize \mathcal{L} :

$$\partial_t \mu_t = \nabla \cdot \left[\left(\nabla \frac{\delta F(\mu_t)}{\delta \mu} + \lambda_2 \nabla \log(\mu_t) \right) \mu_t \right]$$

> SDE the Fokker-Planck equation of which corresponds to this Wasserstein GF:

$$dX_t = -\nabla \frac{\delta F(\mu_t)}{\delta \mu} (X_t) dt + \sqrt{2\lambda_2} dB_t$$
$$\mu_t = Law(X_t)$$

Vanilla GLD: $dX_t = -\nabla L(X_t)dt + \sqrt{2\lambda_2}dB_t$

$$\mathcal{L}(\mu) = \int L(x) d\mu(x) + \lambda_2 \text{Ent}(\mu)$$
$$F(\mu) \Rightarrow \frac{\delta F}{\delta \mu} = L$$

Definition (first variation)

The first variation $\frac{\delta F}{\delta \mu} : \mathcal{P} \times \mathbb{R}^d \to \mathbb{R}$ is defined as a continuous functional such as $\lim_{\epsilon \to 0} \frac{F(\epsilon \nu + (1 - \epsilon)\mu) - F(\mu)}{\epsilon} = \int \frac{\delta F(\mu)}{\delta \mu} (x) \mathrm{d}(\nu - \mu)(x)$

MFLD for mean field NN

Finite particle approximation:

$$\begin{split} \mathrm{d} \hat{X}_t^i = &- \nabla \frac{\delta F \left(\frac{1}{N} \sum_{j=1}^N \delta_{\hat{X}_t^j} \right)}{\delta \mu} (\hat{X}_t^i) \mathrm{d} t \\ &+ \sqrt{2\lambda_2} \mathrm{d} B_t^i \end{split}$$

(GLD to optimize the finite width neural network)

Other applications

Mean field Langevin dynamics can be applied to several problems where a distribution is optimized.

<u>Nonparametric density estimation</u> via MMD minimization

$$F(\mu) = \mathrm{MMD}^2(g * \mu, \hat{\mu}_n) + \lambda_1 \mathbb{E}_{\mu}[||x||^2]$$

k: positive definite kernel

$$MMD^{2}(\nu_{1},\nu_{2}) := \|k_{\nu_{1}} - k_{\nu_{2}}\|_{\mathcal{H}_{k}}^{2}$$

where $k_{\mu} = \int k(x, \cdot) \mu(dx)$ (kernel embedding).

$$g(x) = \frac{1}{\sqrt{(2\pi\sigma^2)^d}} \exp\left(-\frac{\|x\|^2}{2\sigma^2}\right)$$

$$\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i} : \text{empirical distribution (training data)}$$
(see also Chizat (2022,TMLR))

<u>Variational inference</u> to approximate Bayesian posterior

$$F(\mu) = \mathrm{KSD}(\mu) + \lambda_1 \mathbb{E}_{\mu}[\|x\|^2]$$

(KSD: Kernel Stein Discrepancy from a posterior distribution)

Summary of our research

Infinite particles / Continuous time

Linear convergence of mean field Langevin:

[Nitanda, Wu, Suzuki (AISTATS2022)] [Chizat (TMLR2022)]

-

Finite particle / Discrete time

Double loop method:

- PDA [Nitanda, Wu, Suzuki: NeurIPS2021]
- P-SDCA [Oko, Suzuki, Wu, Nitanda: ICLR2022]
- Infinite-dim extension [Nishikawa, Suzuki, Nitanda: NeurIPS2022]

Difficult :

Propagation of chaos (McKean, Kac,..., 60's)

Finite particle / Continuous time

Uniform-in-time propagation of chaos:

- Super log-Sobolev ineq. [Suzuki, Nitanda, Wu (ICLR2023)]
- Leave-one-out type evaluation/Uniform-log-Sobolev [Chen, Ren, Wang (arXiv2022)]

Single loop method

- Noisy gradient descent on 2-layer NN with <u>finite width</u>.
- **Time discretization:** $t \rightarrow k\eta$
- **Space discretization:** μ_t is approximated by *N* particles

$$\mu_t \to \hat{\mu}_k = \frac{1}{N} \sum \delta_{X_k^{(i)}}$$

• Stochastic gradient: $\nabla \frac{\delta F(\mu)}{\delta \mu} \rightarrow v_k^i$

Uniform log-Sobolev inequality

Potential of the joint distribution $\mu_{l}^{(N)}$ on $\mathbb{R}^{d \times N}$:

$$\begin{aligned} \mathscr{L}^{N}(\mu_{k}^{(N)}) &= N \mathbb{E}_{\mathscr{X} \sim \mu_{k}^{(N)}} [F(\hat{\mu}_{\mathscr{X}})] + \lambda_{2} \mathrm{Ent}(\mu_{k}^{(N)}). \\ \end{aligned}$$
where $\hat{\mu}_{\mathscr{X}} &= \frac{1}{N} \sum_{i=1}^{N} \delta_{X^{(i)}} \qquad (\mathscr{X} = (X^{(i)})_{i=1}^{N}). \end{aligned}$

 \succ The finite particle dynamics is the Wasserstein gradient flow that minimizes \mathscr{L}^N .

(Approximate) Uniform log-Sobolev inequality [Chen et al. 2022] For any N, $\frac{1}{N}\mathscr{L}^{N}(\mu_{k}^{(N)}) - \mathcal{L}(\mu^{*}) \leq \frac{\alpha\lambda_{2}}{2} \left(\frac{1}{N} I(\mu_{k}^{(N)}||p^{(N)})\right) + \frac{C_{\alpha,\lambda_{2}}}{N}$ where $p^{(N)}(\mathscr{X}) \propto \exp(-\frac{N}{\lambda_2}F(\hat{\mu}_{\mathscr{X}}))$ [Chen, Ren, Wang. Uniform-in-time propagation of chaos Recall $\mathcal{L}(\mu) = F(\mu) + \lambda_2 \operatorname{Ent}(\mu)$

for mean field langevin dynamics. arXiv:2212.03050, 2022.]

Convergence analysis

 $p_{\mu}(x) \propto \exp\left(-\frac{1}{\lambda_2} \frac{\delta F(\mu)}{\delta \mu}(x)\right)$: proximal Gibbs measure Theorem (One-step update) [Suzuki, Nitanda, Wu (2023)] Suppose that p_{μ} satisfies log-Sobolev inequality with a constant α . Under smoothness and boundedness of the loss function, it holds that $\mathscr{L}^{(N)}(\hat{\mu}_{k+1}) - \mathcal{L}(\mu^*)$ $\leq \exp(-\lambda_2 \eta_k / \alpha) \left(\mathscr{L}^{(N)}(\hat{\mu}_k) - \mathcal{L}(\mu^*) \right)$ + $C\left(\eta_k^3 + \lambda_2 \eta_k^2 + \frac{\eta_k}{N} + \eta_k^{\frac{3}{2}} \lambda_2^{\frac{1}{2}} \max_i \operatorname{Var}[v_k^i]\right)$ Time **Space Stochastic** discr. discr. approx. 1. $F: \mathcal{P} \to \mathbb{R}$ is convex and has a form of $F(\mu) = L(\mu) + \lambda_1 \mathbb{E}_{\mu}[||x||^2]$. Assumption: 2. (smoothness) $\left\| \nabla \frac{\delta L(\mu)}{\delta \mu}(x) - \nabla \frac{\delta L(\nu)}{\delta \mu}(y) \right\| \leq C(W_2(\mu, \nu) + \|x - y\|)$ and (boundedness) $\left\| \nabla \frac{\delta L(\mu)}{\delta \mu}(x) \right\| \leq R.$

Space discretization is shown through the uniform-log-Sobolev inequality shown by Chen et al. 2022. [Chen, Ren, Wang. Uniform-in-time propagation of chaos for mean field langevin dynamics. arXiv:2212.03050, 2022.]

Computational complexity

• SG-MFLD

$$F(\mu) = \frac{1}{n} \sum_{j=1}^{n} f_j(\mu) \quad \text{(finite sum),}$$

$$v_k^i = \frac{1}{B} \sum_{j \in I_k} \nabla \frac{\delta f_j(\hat{\mu}_k)}{\delta \mu} (X_k^i) \quad \text{(stochastic gradient)}$$

$$(\text{Mini-batch size} = B)$$

$$\mathscr{L}^{(N)}(\hat{\mu}_k) - \mathcal{L}(\mu^*) \lesssim \exp(-\lambda_2 \eta k / \alpha) + \frac{\alpha}{\lambda_2} \left(\eta^2 + \lambda_2 \eta + \frac{1}{N} + \frac{(n-B)\sqrt{\eta\lambda_2}}{B(n-1)} \right)$$

Iteration complexity:

By setting
$$\eta = O\left(\frac{\lambda_2\epsilon}{\alpha}\lambda_2^{-1} \wedge \left(\frac{\lambda_2\epsilon}{\alpha}\right)^2 \frac{B^2(n-1)^2}{(n-B)^2\lambda_2} \wedge \sqrt{\frac{\lambda_2\epsilon}{\alpha}}\right)$$
, the iteration complexity becomes

$$k = O\left(\frac{\alpha}{\epsilon} + \left(\frac{\alpha}{\lambda_2 \epsilon}\right)^2 \frac{\lambda_2 (n-B)^2}{B^2 (n-1)^2} + \sqrt{\frac{\alpha}{\lambda_2 \epsilon}}\right) \frac{\alpha}{\lambda_2} \log(\epsilon^{-1})$$

Space

discr.

Time

discr.

Stochastic

approx.

to achieve $\epsilon + O(\alpha/(\lambda_2 N))$ accuracy.

 \succ B = n ∧ $\sqrt{\alpha/(\lambda_2 \epsilon)}$ is the optimal mini-batch size.

Summary

<u>Deep learning theory</u> Representation ability + Optimization

[Representation theory]

- Minimax optimality of diffusion model
 - > Total variation distance and Wasserstein distance
 - Avoids curse of dimensionality

[Kazusato Oko, Shunta Akiyama, Taiji Suzuki: Diffusion Models are Minimax Optimal Distribution Estimators. arXiv:2303.01861, 2023]

[Optimization]

- Mean field Langevin dynamics
 - Unifying frame-work
 - (1) Time discretization, (2) Space discretization, (3) Stochastic gradient

[Taiji Suzuki, Atsushi Nitanda, Denny Wu: Convergence of mean-field Langevin dynamics: Time and space discretization, stochastic gradient, and variance reduction. 2023]

We are still at a primitive stage. Hope to have collaborations!

B-spline basis decomposition

$$\nabla \log(p_t(x)) = \boxed{\frac{\nabla p_t(x)}{p_t(x)}}$$

> Approximate each term by DNNs

28

• B-spline decomposition of a Besov function p_0

$$p_0(x) \approx \sum_{j=1}^N \alpha_j M^d_{a^j, b^j}(x)$$

$$\mathcal{N}(x) = \begin{cases} 1 & (x \in [0, 1]), \\ 0 & (\text{otherwise}) \end{cases}$$

Cardinal B-spline of order m:

$$\mathcal{N}_m(x) = (\underbrace{\mathcal{N} * \mathcal{N} * \cdots * \mathcal{N}}_{})(x)$$

 \rightarrow Piece-wise polynomial of order m.

Tensor product B-spline:

$$M^{d}_{a,b}(x) = \prod_{j=1}^{d} \mathcal{N}_{m}(2^{a_{j}} - b_{j})$$

Cardinal B-spline interpolation (Devore & Popov, 1988)²⁹

• Atomic decomposition:

$$\mathcal{N}_{k,j}^{(d)}(x_1,\ldots,x_d) = \prod_{i=1}^d \mathcal{N}_m(2^k x_i - j_i)$$

 $f \in B_{p,q}^s$ can be decomposed into

$$f = \sum_{k \in \mathbb{N} + j \in J(k)} \alpha_{k,j} \mathcal{N}_{k,j}^{(d)}$$

such that

(where
$$J(k) = \{j \in \mathbb{Z}^d \mid -m < j_i < 2^{k_i+1} + m\}$$

$$N(f) = \left[\sum_{k=0}^{\infty} \{2^{sk} (2^{-kd} \sum_{j \in J(k)} |\alpha_{k,j}|^p)^{1/p}\}^q\right]^{1/q} < \infty$$

$$\|f\|_{B^s_{p,q}}\simeq N(f)$$
 (Norm equivalence)

Wavelet/multi-resolution expansion

DNN can approximate each B-spline basis efficiently.

$$f = \sum_{\substack{k,j \in I_N \\ N \text{ terms (should be appropriately chosen depending on f)}} \alpha_{k,j} \mathcal{N}_{k,j}^{(d)} + O(N^{-s/d})$$

(see also Bolcskei, Grohs, Kutyniok, Petersen: Optimal Approximation with Sparsely Connected Deep Neural Networks. 2018)

Proof outline (1)

$$\nabla \log(p_t(x)) = \begin{cases} \overline{\nabla p_t(x)} \\ p_t(x) \end{cases}$$
 Approximate each term by DNNs

• B-spline decomposition of a Besov function p_0

$$p_0(x) \approx \sum_{j=1}^N \alpha_j M^d_{a^j, b^j}(x)$$

• Diffused B-spline basis expansion of p_t

➤ We approximate *Diffused B-splines* by DNNs.

Approximation error of Diffused B-spline

Lemma (Approximation error of diffused B-spline)

There exists a deep neural network $\hat{\phi}: \mathbb{R}^d \times \mathbb{R}_+ \to \mathbb{R}^d$ such that

$$\left\|\hat{\phi}(x,t) - E_{a^{j},b^{j}}(x,t)\right\|_{\infty} \le \epsilon$$

with depth $L = O(\log^4(\epsilon^{-1}))$, width $W_i = O(\log^6(\epsilon^{-1}))$, sparsity (# of non-zero parameters) $S = O(\log(\epsilon^{-1}))$, and ℓ^{∞} -norm bound $B = O(\exp(O(\log^2(\epsilon^{-1}))))$ on parameters.

$$\check{f}_N(x,t) = \sum_{i=1}^N \alpha_i \hat{\phi}_i(x,t)$$
: Deep neural network

$$\|p_{t}(\cdot) - \check{f}_{N}(\cdot, t)\|_{L^{r}} \leq \sum_{i=1}^{N} |\alpha_{i}| \|\phi_{i}(\cdot, t) - \hat{\phi}_{i}(\cdot, t)\|_{L^{r}} + \|\sum_{i=N+1}^{\infty} \alpha_{i}\phi_{i}(\cdot, t)\|_{L^{r}} \leq 0(e^{-L}) \leq N^{-s/d}$$

Error bound of score

Bound by diffused B-spline approximation $p_t(x) \approx \sum_{j=1} \alpha_j E_{a^j, b^j}(x, t)$ $||p_t - \check{f}_N(\cdot, t)||_{L^r(X_t)} \lesssim N^{-s/d} ||p_0||_{B^s_{p,q}}$ > Similar argument is applied to ∇p_t : $\|\nabla \log p_t - \dot{f}_N(\cdot, t)\|_{L^2}^2 \lesssim \frac{N^{-2s/d} \log(N)}{\sigma^2}$

- A tighter bound on the smooth part $(t > t_*)$ $\|p_t\|_{W_p^k} = \sum_{|\alpha| \le k} \|\frac{\partial^{\alpha} p_t}{\partial x^{\alpha}}\|_{L^p} \lesssim \sigma_t^{-k} (\le t_*^{-\frac{k}{2}})$ $\|p_t - \check{f}_{N'}\|_{L^2(X_t)}^2 \lesssim N'^{-2k/d} t_*^{-k}$
- Useful for W1 bound. - Smoothness around the edge (A2) is not requires.

(take k = s + 1)

Error decomposition

$$\begin{aligned} & \text{Score matching loss} \\ & \text{TV}(X_0, \hat{Y}_{\overline{T}-\underline{T}}) \lesssim \begin{bmatrix} \int_{t=\underline{T}}^{\overline{T}} \mathbb{E}_{X_t \sim p_t} [\|\hat{s}(X_t, t) - \nabla \log p_t(X_t)\|^2] dt \\ & +n^{O(1)} \sqrt{\underline{T}} + \exp(-O(\overline{T})) \lesssim n^{-\frac{s}{d+2s}} \log^9 n \\ & \text{Truncation loss} & \text{Truncation loss} \\ & \text{at } \underline{T}. & \text{at } \overline{T}. \end{bmatrix} \\ & t_* = N^{-(2-\delta)/d} & \log(\operatorname{covering num}) \\ & \int_{t=\underline{T}}^{\overline{T}} \mathbb{E}_{X_t} [\|\nabla \log p_t - \hat{s}(\cdot, t)\|^2] dt & \text{Variance} \\ & \lesssim \int_{\underline{T}}^{\overline{T}} \frac{N^{-2s/d}}{\sigma_t^2} \log(N) dt & + & \frac{N \operatorname{polylog}(N)}{n} \\ & \lesssim \left(N^{-2s/d} + \frac{N}{n} \right) \operatorname{polylog}(N) \\ & N \simeq n^{d/(2s+d)} \\ & \lesssim n^{-2s/(2s+d)} \operatorname{polylog}(n) \end{aligned}$$

Bound for W1 distance

Implementable discretization

35

$$\min_{s \in \text{DNN}} \frac{1}{n} \sum_{i=1}^{n} \int_{t=\underline{T}}^{\overline{T}} \mathbb{E}_{X_t | X_0 = x_i} [\|s(X_t, t) - \nabla \log p_t(X_t | x_i)\|^2] dt$$
Finite sample approximation
$$\min_{s \in \text{DNN}} \frac{1}{M} \sum_{j=1}^{M} \|s(x_{t_j, j}, t_j) - \nabla \log p_{t_j}(x_{t_j, j} | x_{i_j})\|^2$$

$$i_j \sim \text{Unif}(\{1, \dots, n\})$$

$$i_j \sim \text{Unif}([\underline{T}, \overline{T}])$$

$$x_{t_j, j} \sim p_{t_j}(\cdot | x_{i_j})$$

$$M \gtrsim n \cdot \underline{T}^{-1} = n^{1 + \frac{2(s+1)}{2s+d}}$$

is sufficient to attain the same convergence rate.

Mean field limit of 2-layer NN

• 2-layer neural network:

$$f(z) = \frac{1}{M} \sum_{j=1}^{M} r_j \sigma(w_j^{\top} z)$$

<u>Non-linear</u> with respect to parameters $(r_j, w_j)_{i=1}^M$.

• Overparameterization (Mean field limit):

$$f(z) = \frac{1}{M} \sum_{j=1}^{M} r_j \sigma(w_j^{\top} z) \xrightarrow{M \to \infty} f_{\mu}(z) = \int r \sigma(w^{\top} z) d\mu(r, w)$$

Linear with respect to the prob. measure μ .

GLD as a Wasserstein gradient flow⁷

$$\mathrm{d}X_t = -\nabla L(X_t)\mathrm{d}t + \sqrt{2\beta^{-1}}\mathrm{d}B_t$$

 μ_t : Distribution of X_t (we can assume it has a density)

PDE that describes μ_t 's dynamics [Fokker-Planck equation]:

$$\partial_t \mu_t = \nabla \cdot \left[\mu_t \left(\nabla L + \frac{1}{\beta} \nabla \log(\mu_t) \right) \right]$$

This is the Wasserstein gradient flow to minimize the following objective:

$$\mu^* = \underset{\mu \in \mathcal{P}}{\operatorname{arg\,min}} \int L(x) d\mu(x) + \frac{1}{\beta} \operatorname{Ent}(\mu) =: \mathcal{L}(\mu)$$

[linear w.r.t. μ] (Ent(μ) = $\int \log(\mu) d\mu$)

 $\mu^*(x) \propto \exp(-\beta L(x))$: Stationary distribution

Difficulty

• SDE of interacting particles (McKean, Kac,..., 60')

Propagation of chaos [Sznitman, 1991; Lacker, 2021]:

The particles behave as if they are independent as the number of particles increases to infinity.

Finite particle approximation error can propagate through time. \rightarrow It is difficult to bound the perturbation uniformly over time.

Feature learning with one-step gradient descent

[Ba, Erdogdu, Suzuki, Wang, Wu, Yang: High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation. NeurIPS2022]

Jimmy Ba

Murat A. Erdogdu

Zhichao Wang

Denny Wu

Greg Yang

Problem setting

Observation model:

$$y_i = f^*(x_i) + \epsilon_i \quad (i = 1, ..., n)$$

where $x_i \sim N(0, I)$, $\epsilon_i \sim N(0, 1)$, and $x_i \in \mathbf{R}^d$.

➤ We fit 2-layer NN of mean field scaling:

(:
$$a_i = O_p(1/\sqrt{N})$$
)
Mean field regime $O(1/N)$

$$f_{\rm NN}(x) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} a_i \sigma(\langle x, w_i \rangle) = \frac{1}{\sqrt{N}} a^{\top} \sigma(W^{\top} x)$$

where $a_i \sim N(0, 1/N)$ and $W_{ij} \sim N(0, 1/d)$.

Empirical risk:

Predictive risk:

$$\mathcal{L}(f) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2 \qquad \qquad \mathcal{R}(f) = \mathbb{E}[(f^*(X) - f(X))^2]$$

Question: Can we provably improve the predictive risk by gradient descent? We analyze the risk especially for the single index model:

$$f^*(x) = \sigma^*(\langle x, \beta^* \rangle)$$

Feature learning with optimization guarantee

$$f_{\rm NN}(x) = \frac{1}{\sqrt{N}} \sum_{i=1}^{N} a_i \sigma(\langle x, w_i \rangle) = \frac{1}{\sqrt{N}} a^\top \sigma(W^\top x)$$
$$W_{k+1} = W_k - \eta \sqrt{N} \nabla_W L(f_{\rm NN})$$

We consider the **proportional limit** $(n, d, N \to \infty \text{ with } n/_d \to \psi_1, N/_d \to \psi_2)$. It allows to derive precise risk.

We evaluate predictive risk of **one-step GD**.

Take home message: GD with Large step-size can outperform **any** random feature model by only one-step update.

[Outline of our result]

- > $\eta = \Theta(\sqrt{N})$ can get out of NTK regime and outperform random feature models.
- $\succ \eta = \Theta(1)$ can outperform the initial setting of *W*.
- $\succ \eta = o(1)$ does not improve the performance.

Ridge regression with RF

Feature learning vs Random feature

Random features (without feature learning):

Conjugate kernel at initialization:

$$\phi_{\rm CK}(x) = \frac{1}{\sqrt{N}} \sigma(W_0^{\top} x)$$

Precise asymptotics has been extensively studied. (e.g., [Louart, Liao, and Couillet, 2018; Mei and Montanari, 2019])

• **NTK** (Neural tangent kernel):

$$\phi_{\rm NTK}(x) = \frac{1}{\sqrt{Nd}} \operatorname{Vec}(\sigma'(W_0^{\top} x) x^{\top})$$

$$\hat{a}_{\mathrm{RF}} = \operatorname*{arg\,min}_{a \in \mathbb{R}^{N}} \left\{ \frac{1}{n} \sum_{i=1}^{n} (y_{i} - \langle a, \phi_{\mathrm{RF}}(x_{i}) \rangle)^{2} + \frac{\lambda}{N} \|a\|^{2} \right\} \quad \mathsf{RF} \in \{\mathsf{CK}, \mathsf{NTK}\}$$

Trained feature:

$$\phi_{\mathrm{CK}^{(t)}}(x) = \frac{1}{\sqrt{N}}\sigma(W_t^{\top}x)$$

Rank 1 property of first gradient step ⁴³

• The gradient G_t can be approximated by rank one matrix. \Rightarrow There appears "spike" in the spectral distribution of W_1 .

$$G_t = -\frac{1}{n} X^{\top} \left[\left(\frac{1}{\sqrt{N}} \left(\frac{1}{\sqrt{N}} \sigma(XW_t) a - y \right) a^{\top} \right) \odot \sigma'(XW_t) \right]$$

(generally, this is not low rank due to the nonlinearlity of σ')

Theorem (Rank one approximation of gradient)

Remember that
$$G_0 = \frac{1}{\eta\sqrt{N}}(W_1 - W_0)$$
 (:: $W_1 = W_0 + \eta\sqrt{N}G_0$)
Let $\mu_1 = \mathbb{E}[z\sigma(z)], \quad \mu_2 = \sqrt{\mathbb{E}[\sigma(z)^2] - \mu_1^2}, \quad \text{where } z \sim \mathcal{N}(0, 1).$

Define $A := \frac{\mu_1}{n\sqrt{N}} X^\top y a^\top$ (rank one matrix), then we have

$$\|G_0 - A\| \lesssim \frac{\log^2(n)}{\sqrt{n}} \cdot \|G_0\|$$

with high probability for sufficiently large n, d, N.

 $W_1 = W_0 + \eta \times (\text{rank one matrix}).$ \Rightarrow For large step size η , spike becomes more dominant.

Effect of large step-size update ⁴⁴

Limitation of RF

(1) Random feature models and
(2) GD updates with <u>small learning rate</u>
can learn only <u>linear functions</u> in the proportional

[El Karoui (2010); Ghorbani et al. (2019), Hu and Lu (2020), ...] $\mathcal{R}_{XX}(f) = \mathbb{E}[(f^*(X) - \hat{f}_{XX}(X))^2]$

Theorem (Lower bound of predictive risk for RF)

If the step size is not large $\eta = \Theta(1)$, then for any finite number steps t, we have

 $\inf_{\lambda>0} \min\{\mathcal{R}_{\mathrm{CK}}(\lambda), \mathcal{R}_{\mathrm{NTK}}(\lambda), \mathcal{R}_{\mathrm{CK}^{(t)}}(\lambda)\} \ge \|P_{>1}f^*\|_{L^2(P_X)}^2 + o_{p,d}(1)$

 $P_{>1}f^* := (I - P_{\le 1})f^*$

Nonlinear part cannot be trained!

where $P_{\leq 1}$ is the projection operator in $L^2(P_X)$ to the subspace consisting of linear functions and constants.

Remark: The same is true for "rotational invariant kernel" [El Karoui (2010)].

This is because in high dimensional setting, a central limit theorem yields

 $a^{\top}\phi_{\mathrm{CK}}(x) = \frac{1}{\sqrt{N}}a^{\top}\sigma(W_0^{\top}x_i) \approx \frac{1}{\sqrt{N}}a^{\top}(\mu_1 W_0^{\top}x_i + \mu_2 z)$

(linear function; Gaussian equivalence)

Improvement over the Initial CK⁴⁶

Large learning rate yields feature learning and can be better than the small step size regime if $\tau^* \ll ||P_{>1}f^*||^2$.

Implications

Predictive risk of ridge regression on CK obtained by one step GD (empirical simulation, d = 1024): brighter color represents larger step size scaled as $\eta = N^{\alpha}$ for $\alpha \in [0,1/2]$. We chose $\sigma = \sigma^* = \operatorname{erf}, \psi_2 = 2, \lambda = 10^{-3}$, and $\sigma_{\epsilon} = 0.1$.