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Success of deep learning

Large language model

SuperGLUE Performance

Deep learning has shown
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[Representation theory]

« Minimax optimality of diffusion model
» Total variation distance and Wasserstein distance
» Avoids curse of dimensionality

[Kazusato Oko, Shunta Akiyama, Taiji Suzuki: Diffusion Models are Minimax Optimal
Distribution Estimators. arXiv:2303.01861, 2023]

[Optimization]

* Mean field Langevin dynamics
» Unifying frame-work
> (1) Time discretization, (2) Space discretization, (3)
tochastic gradient

[Taiji Suzuki, Atsushi Nitanda, Denny Wu: Convergence of mean-field Langevin dynamics:
Time and space discretization, stochastic gradient, and variance reduction. 2023]



Minimax optimality of diffusion model

[Kazusato Oko, Shunta Akiyama, Taiji Suzuki: Diffusion Models are Minimax
Optimal Distribution Estimators. arXiv:2303.01861, 2023]
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Diffusion model

DALL-E: [Aditya Ramesh, Mikhail
Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark
Chen, llya Sutskever: Zero-Shot Text-
to-lmage Generation. ICML2021.]
DALL-E2:[Aditya Ramesh, Prafulla
Dhariwal, Alex Nichol, Casey Chu,
Mark Chen: Hierarchical Text-
Conditional Image Generation with
CLIP Latents. arXiv:2204.06125]

[ An astronaut riding a

horse in a photorealistic
style |

Stable diffusion, 2022.

Jason Allen "Théatre D'opéra Spatial” generated by Midjourney.
Colorado State Fair's fine art competition, 15t prize in digital art
category

Generated by NovelAl



Decoder : Diffusion model

[Sohl-Dickstein et al.,, 2015; Song & Ermon, 2019; Song et al., 2020; Ho et al., 2020; Vahdat et al., 2021]

Forward process : Convert the target distribution to a noise distribution (e.g., Gaussian)

dX, = — X,dt + v2dB,

dY; = (Y; 4 2V log(p=_,(V3))dt + V2d B,
(Yt ~ XT—t)
Reverse process : Convert the noise distribution to the target distribution

Latent Space Diffusion

Encoder P(Zo) > P(Zl)

Datax —_—

e — Zg|X
== N\
== O

: == |
Reconst. < _—
p(x|z0) Decoder KL(q(zo|x)||p(20)) Latent Space Denoising

[Vahdat, Kreis, Kautz: Score-based Generative Modeling in Latent Space. arXiv:2106.05931]



Forward process 7

Forward process:

dXt — —Xtdt —|— \/idBt
OU process
« Marginal distribution

Pt = L&W(Xt) ‘ Dt th—— ]NO ygﬂ?%gfﬁ?%ﬁ) (‘#‘Uaj _Q:tty|‘2>

where pu, = exp(—t), of = 1 — exp(—2t).

The forward process converges to the noise distribution (standard normal)
exponentially:

L(p:|[N(0,1)) < Ofexp(—21))

p(2o) Latent Space Diffusion , p(z1)
C [Vahdat, Kreis, Kautz: Score-based
Generative Modeling in Latent Space.
arXiv:2106.05931]




Reverse process :

p(zo) Latent Space Diffusion p(z1)

Reverse process:
(unknown)

YprT

(UnkﬂOWn) %0)) Latent Space Denoising

dY; = (V; + 2V log(p7_, (Yy))dt + det

[Haussmann & Pardoux, 1986]

=Y ~ p7_,
Approximated process (generative model):

}A/O ~ N(0,1) \ (N(0,1) is close to p=)

dY; = (Y; + 28(Y;, T — t))dt + V2d B,

Theorem (Girsanov's theorem; Chen et al. (2023))

If Y() ~ PT, then

KL(pollps,) < 7 [ EillIVloglpr_,(¥0) = (11, T — o)l

= |t suffices to estimate the score function Vlog(p;) as accurate as possible.




Score matching :

/O Ey, [V log(pr_, (V1)) — 8(%;, T — t)||at

:/O Ex,[||V log(p: (X:)) — §(X;, )|%]dt

T
— [ B, IV og(pe (X X0) = 5(Y. )| Pldt + (const)
0

Observation (n data points D,, = {x;}i{=;)
r,~py (1=1,...,n)

Empirical score matching loss:

min —Z/ Ext|X0 —x, [H (X¢, 1) — VIOgPt(Xt‘xz)H }

seDNN N T
|

Can be sampled via OU process Explicit form is available




Existing work on error analysis

» Reverse SDE characterization: Song et al. (2021)

[Approximation error analysis]

» KL-divergence bound via Girsanov’s theorem: Chen et al.
(2022)

* Error bound with LSI: Lee et al. (2022a)
» With smoothness: Chen et al. (2022) and Lee et al. (2022b)

* Error propagation with manifold assumption: Pidstrigach
(202253 Pag P g

[Generalization analysis]

» Wasserstein dist bound (n~1/¢) with manifold assumption:
De Bortoli (2022)



Problem setting
X

The true distribution p, is supported on [—1,1]¢ and
Po © B;,q
with s > (1/p — 1/2), as a density function on [—1,1]¢.

\\ y

Po is sufficiently smooth on the edge of the
1—6

support [—1,1]%\ [-1 + n~a,1—n- Tl

Besov space (B, ,(Q))
S ()

=1

Very smooth

?

LP(S2)

wm(f, t)p = sup
Ihll<t

1 Besov space
> gt
118 () = Ifller(@) + (/0 [t Twm(f D!~ ) . —1 1

Smoothness Spatial inhomogeneity



Problem setting

Assumption 1
The true distribution p, is supported on [—1,1]¢ and

Po € By
with s > (1/p — 1/2), as a density function on [—1,1]¢.

\, y

Po is sufficiently smooth on the edge of the

support [—-1,1]%\ [-1+n~"@ ,1—n~"a ]2
Besov space (R2 (Q))
Intuition Smoothness

If Iary smooth

s = vy + || D° o
wom(F1 1) Bs (@) = lfllzr@) + | fHLK(Q)

Uniformity of smoothness

1\ 1/ Besov space
o0 . ¢
1flls; @) = Iflle(e) + (/0 [t Twm(ﬂ ), "T) - —1 1

Smoothness Spatial inhomogeneity



Convergence rate result .

Theorem (Estimation error in TV-distance) ~N

Let T = n=%W, T = 0(log(n)). Then, the empirical risk minimizer §
in DNN satisfies

Ep, {TV(YT—IaXO)} S n~ 7 logg(n).

This is minimax optimal, that is, it holds

n"=m < inf  supEp, [TV(f, Xo)]
K prrestimator  p )

Although 3(x, t) is a function with d + 1-dimensional input, there appears “d” in the
bound instead of d + 1. This is because Gaussian convolution induces smoothness.



Low dimensional structure 14
R% , W

=

The support of the target distribution is in
a low dimensional subspace.

The estimated distribution is never absolutely continuous
to the target distribution.
— Wasserstein distance



W -distance convergence rate

Theorem (Estimation error in W1-distance)

For any fixed § > 0, by slightly changing the estimator, the empirical
risk minimizer s in DNN satisfies

A S—|—1—6

Ep, {Wl(YT—T7X0>} SR

This is also known as minimax optimal (up to &) [Niles-Weed & Berthet
(2022)].

- J

« d' appears instead of d: Diffusion model can avoid curse of dimensionality.
« The minimax rate of Wasserstein distance is faster than that of TV distance,
which makes it difficult to establish the bound.
» We need more precise estimate of the score around t = 0.

- _S—I—l
TV) m~ 2s+d mm) ) 2s+d (W1




Generalization
ability

Optimization

Mean field Langevin dynamics
to optimize two-layer NN

[Suzuki, Nitanda, Wu: Convergence of mean-field Langevin dynamics: Time and space
discretization, stochastic gradient, and variance reduction. 2023]

Atsushi Nitanda Denny Wu
(Kyusyu Institute of (University of
Technology) Toronto)



Objective of mean field NN

Mean field Langevin dynamics:

L(p) = F(p) + A2Ent(p)

convex
» Wasserstein gradient flow to minimize L:

Oty = V - {(V%fjt) + )\2V10g(,ut)) Nt}

» SDE the Fokker-Planck equation of which corresponds to this Wasserstein GF:
OF /
dXt — —V ('UJt dt —|— 2)\2dBt
— L&W(Xt)

Vanilla GLD: dX; = —VL(X,)dt + \/2X\2d By

£ = [ L()du(e) + AoBnt(n)
Fny =X=1

Su




Definition (first variation)

The first variation g—i: P x R% - R is defined as a continuous functional such as

Flev+ (1 —e)p) — F(p) _ / S (1) d(v — p)(x)

o

lim
e—0 €




MFLD for mean field NN 19

fu(2) = /hx(z)d,u(x) Loss function:
he(2) =ro(w'z) for x = (r,w) F(p) = %Zfi(fu) + ME,[||]?]

Mt
Neuron (distribution of X,) Finite particle approximation:
hy ()
< / > ~ ( ZQ 1 X.]) Ny
dX; =—-V (X})dt
oo o "

o> i

v/ 2 dB

/ O O T sr(m) " ? !
V== (@)

X (vector field)

(GLD to optimize the finite width neural network)



Other applications

Mean field Langevin dynamics can be applied to several
problems where a distribution is optimized.

* Nonparametric density estimation via MMD minimization

2 .
F(u) = MMD?(g * s, fi,) + ME,[[|2)?]
k: positive definite kernel
MMD2(V17V2) = ||ky, — km”%—tk
where k, = [ k(x,-)u(dx) (kernel embedding).

s o61= o (1)

> fln = - Z% . empirical distribution (training data)
=1 (see also Chizat (2022, TMLR))

 Variational inference to approximate Bayesian posterior
F(p) = KSD(p) + ME,[[|z]|]

(KSD: Kernel Stein Discrepancy from a posterior distribution)




Summary of our research

Infinite particles / Continuous time
( )
Linear convergence of

mean field Langevin:

[Nitanda, Wu, Suzuki (AISTATS2022)]

[Chizat (TMLR2022)]
\. J/

Difficult :

=

Finite particle / Discrete time

\_

i Double loop method:

~

* PDA [Nitanda, Wu, Suzuki: NeurlPS2021]

* P-SDCA [Oko, Suzuki, Wu, Nitanda:
ICLR2022]

* Infinite-dim extension [Nishikawa, Suzuki,
Nitanda: NeurlPS2022]

J

Propagation of chaos (McKean, Kac,..., 60’s)

Finite particle / Continuous time
(. )

Uniform-in-time propagation of chaos:

» Super log-Sobolev ineq.
[Suzuki, Nitanda, Wu (ICLR2023)]

* Leave-one-out type
evaluation/Uniform-log-Sobolev

[Chen, Ren, Wang (arXiv2022)]

- J

=)

/ Finite particle / Discrete time\

4 A
Single loop method:
Time-space discretization,
stochastic gradient

[Suzuki, Nitanda, Wu (2023)] )

\\




Single loop method

dX, = —V‘SF(M Ddt + 1/2Xd B,

(time discretization) ' / o _

X{, = X — vk + 2t T,
(vector field)

Mt

(distribution of X,)

i [ i N N
where E[v}] = V5L (X)) and ju = 2250, 0
(stochastic gradient) (space discretization)

» Noisy gradient descent on 2-layer NN with finite width.

* Time discretization: t — kn
» Space discretization: y; is approximatd by N particles
He = [k = %25)(’&0
SF(u)
Y7}

» Stochastic gradient: v - vy



Uniform log-Sobolev inequality -

(N

~ Uy ): Joint distribution

of N particles.

Potential of the joint distribution uiN) on R¥N .
LN (V) =N E g 00 [F(frar)] + AoEnt(pi).
where fiz = + Yisy Oxa (2 = (X))
> The finite particle dynamics is the Wasserstein gradient flow that minimizes #?.

(Approximate) Uniform log-Sobolev inequality [Chen et al. 2022]
For any N,

L N, (V) % aAy (1 (N)[1,.(N) Ca s
— & — L < I + ’
/ f gence)

where pM)(27) eXp(—%F(ﬂ%))

Recall £(M) — F(,u> + )\QEIH](/L) [Chen, Ren, Wang. Uniform-in-time propagation of chaos

for mean field langevin dynamics. arXiv:2212.03050, 2022.]




Convergence analysis

pu(x) o exp (—%25];—?(93)) . proximal Gibbs measure

Theorem (One-step update)

[Suzuki, Nitanda, Wu (2023)]
Suppose that p, satisfies log-Sobolev inequality with a constant a

Under smoothness and boundedness of the loss function, it holds that
LN (firg1) — L(1*)

< exp(—dom /@) (LN () — L(1))

3 2 . Mk S\3 i
+C (m + Aomj, + —— + 7 AJ max Vaf[’“k])

A\ J N u ’ J
Y ~— v
Time Space Stochastic
discr. discr. approx.
Assumption: 1 ________________________ < convex and hac a form of F(i) = 1.(u) + L. 2] |

F:P — Ris convex and has a form of F(u) = L(u) + A, E [||x|| ].

2. (smoothness) ” PR () |76L(V)O/)|| < C(W,(u,v) + |lx — yl) and
| (boundedness) ” P (x )” <R.

Space discretization is shown through the uniform-log-Sobolev inequality shown by Chen et al. 2022

[Chen, Ren, Wang. Uniform-in-time propagation of chaos for mean field langevin dynamics. arXiv:2212.03050, 2022.]



Computational complexity 8

* SG-MFLD
F(u) = 5 >2%1 fi()  (finite sum),
vl = % ZjEIk V%W(Xi) (stochastic gradient)

(Mini-batch size = B)

~ 1 (n—B) 77)\2

LN (i) = L") S exp(—Aank = (2 e+ — v

(i) = £(p7) S exp(=Aank/a) + = n° + Ao + 5 + Bln = 1)
Time Space Stochastic
discr. discr. approx.

Iteration complexity:

By setting n =0 (%Az_l A (229) Els Ay %) ,
the iteration complexity becomes

2
Q Q Ao(n — B)? a \ « 4
= - o 1
b O (6 + ()\26) BQ(’R— 1)2 + )\26) )\2 og(e )

to achieve € + O(a/(A,N)) accuracy.
» B =nA, a/(A,€) is the optimal mini-batch size.




Summary

Deep learning theory
Representation ability + Optimization

[Representation theory]

« Minimax optimality of diffusion model
» Total variation distance and Wasserstein distance
» Avoids curse of dimensionality

[Kazusato Oko, Shunta Akiyama, Taiji Suzuki: Diffusion Models are Minimax Optimal Distribution Estimators.
arXiv:2303.01861, 2023]

[Optimization]

« Mean field Langevin dynamics
» Unifying frame-work

> (1) Time discretization, (2) Space discretization, (3) Stochastic
gradient

[Taiji Suzuki, Atsushi Nitanda, Denny Wu: Convergence of mean-field Langevin dynamics: Time and space discretization,
stochastic gradient, and variance reduction. 2023]

We are still at a primitive stage.
Hope to have collaborations!



Appendix



B-spline basis decomposition

V log(p:(x)) I‘::‘—‘—‘—‘—‘—‘—‘—‘—’:> Approximate each term by DNNs

___________

« B-spline decomposition of a Besov function p,

N
~ Z oszlej bi (z)
j=1

0 (otherwise)

Cardinal B-spline of order m:
Nm(z) = (N + N x - -« N)(2)

m + 1 times

— Piece-wise polynomial of order m.

Nhﬂz{1(xemgm

1% ’ Tensor product B- spllne
NJV1

KN M () H/\/




Cardinal B-spline interpolation (pevore & popov, 1988)"

« Atomic decomposition'

HN

f € B; 4 can be decomposed into

=YY N

keN+ jeJ(k)

N;E Xl,...

such that
(where J(k)={j €Z9| -m < j; <

1/q
Z{zs" (27 Z o j1? )”P}} < oo

jed(k

2kt 4 m)

||f”8g_q = N(f) (Norm equivalence)

Wavelet/multi-resolution expansion

Scale j:1
k=0

%0,1

DNN can approximate each
B-spline basis efficiently.

f= > angN + oW/

k,jEIN

N terms (should be appropriately chosen depending on f)

(see also Bolcskei, Grohs, Kutyniok, Petersen: Optimal Approximation with Sparsely Connected Deep Neural Networks. 2018)



Proof outline (1)

e B-spline decomp05|t|on of a Besov function p,

N
~ ZOéngj,bj (z)
j=1
» Diffused B-spline basis expansion of p,

1 z — eyl
pe(x) = || po(y) ————7 exp (—H > | )dy
o (271')2 20’t

Decompose = Kt(f’3|y)

p Oé]/ a’ bJ Kt az\y)

\ J/

= Eaf,bf (x.t) Diffused B-spline
» We approximate Diffused B-splines by DNNs.




Approximation error of Diffused B-spliné

Lemma (Approximation error of diffused B-spline)

There exists a deep neural network ¢: R% x R, — R% such that

A

gb(fl?,t) _Eaj,bj(ajvt)H <€

with depth L = 0(log*(e™1)), width W; = 0(log®(e™1)), sparsity (# of
non-zero parameters) S = 0(log(e™1)), and £*-norm bound B =
0(exp(0(log?(e™1)))) on parameters.

N
fn(z,t) = Z ozz-qgi(:v, t): Deep neural network
i=1

Ipe () = Fn (D)l < i, |04z'|\\|¢z'(',t) - ng‘(wt)HLf +\H D e N1 0%@(',75)”?”

<0(e ™ < N-s/d




Error bound of score

/ 7’
/ /’
U4 4
/ /’
U4 4
/ /’
U4 4
/ /’
U4 4
/ /
U4 4
/. 4
U4 4
/, /’
p i »

7(—,_ = - t
T’ T T

Non-smooth ~ Smooth Very smooth

« Bound by diffused B-spline approximation
Ipe = Fn (5 Ollrx) S N 9Ipoll s,

N
~ Z Oéanj,bj (CE, t)
1=1

N—25/d]og(N)

> Similar argument is applied to Vp,: ||V 1ogps — fn (-, t)||22 < —
t
* A tighter bound on the smooth part (t >t ) - Useful for W1 bound.

- Smoothness around the

HptHW]gc = Z]a’<k H %xﬂt HLp < O'_k(< t ) edge (A2) is not requires.

» |p: — fN’HLz(Xt)<N/ %/dt_ (take k = s + 1)



Error decomposition

/ Score matching loss 1 \

T 2
TV(X()?YT )SJ / EXtht[Hg(Xtat) o VIngt(Xt)||2]dt:|

t=T

+n%W /T + exp(—O(T)) < n~ 72 log” n

Truncation loss Truncation loss

\ atT. atT. /

— N—(2—5)/d

B log(covering num)

/ Ex,[|V1ogp: — 3(-,t)[|?]dt T "

/ N—2s/d log(N)dt  + Npolylog(N)
n

Y

< <N2s/d + %) polylog(V) W
N ~ pd/(2s+d) | \

< n_23/<28+d)polylog(n) I

~| Y



Bound for W1 distance

g

N

~|
SIS |'ﬂ\
& s
e AN
\\
\\ \\
\
~
*

_s
t. =n a4 =128

W1 (Xo,Vi_p) € Wi(Xo, Xg) + Wi (X, Y25 )+ Wy (v D v
(negligible) (exp(— T)) i=1
!

t: ) _ s+1-—36
s [ B30, 0-Viegn (X2l <y~ 2ata
t Y

1—1




Implementable discretization ~

min —Z / E x, 0 [15(Xe. 1) — Vlog po(Xezo)||] dt

secDNN N

I Finite sample approximation

2
g[l)ll{llN M Z | s( S(Tt; 5,1 Vk)gpt (xtg J |$13)H

° ] ~ Unlf({]., e n})
+ t; ~ Unif([T, T])
* xtj,j ~ ptj(. |xij)

Pr

M>n T_ 2s+d

is sufficient to attain the same convergence rate.




Mean field limit of 2-layer NN

« 2-layer neural network:

« Overparameterization (Mean field limit):

M
]. M —> o

f(z) = Vi rio(w; z) —s fu(z) = /ra(sz)d,u(fr,w)

‘ Optimization of f & Optimization of u

Particles move to fit
Lt the model to the data.

(distribution) ‘

Lhoo

(movement of each particle)




GLD as a Wasserstein gradient flow’

dXt = —VL(Xt)dt + 26_1(13,5

pt - Distribution of X, (we can assume it has a density)

PDE that describes u;'s dynamics [Fokker-Planck equation]:

Oy = V - [Mt (VL - %Vlog(,ut)>]

This is the Wasserstein gradient flow to minimize the following objective:

u* = argmin / L(z)dpu(z) + %Ent(,u) L)

[linear w.r.t. u] (Ent(u) = [log(u)du)

m ' (z) x exp(—SL(x)) : Stationary distribution



Difficulty

 SDE of interacting particles (McKean, Kac,..., 60)

Propagation of chaos (sznitman, 1991; Lacker, 2021]:

The particles behave as if they are independent
as the number of particles increases to infinity.

Finite particle approximation error can propagate through time.
— It is difficult to bound the perturbation uniformly over time.

2 I
O
_— B
b<\ -
O
O
— —




Generalization
ability

Optimization

Feature learning
with one-step gradient descent

[Ba, Erdogdu, Suzuki, Wang, Wu, Yang: High-dimensional Asymptotics of Feature
Learning: How One Gradient Step Improves the Representation. NeurlPS2022]

Denny Wu

Greg Yang



Problem setting

/ Observation model: N
v, = () +e (i=1,...,n)
. Wherex; ~ N(0,I),e; ~ N(0,1), and x; € R4. y
> We fit 2-layer NN of mean field scaling: e ﬂef'(; ?eigzimOezj(Ol(/lﬁ)))

1

1 . T T
fan(z) = \/—N;aia(@,wi)) = ——a'o(W'2)

2

where a; ~ N(0,1/N) and W;; ~ N(0,1/4d).

Empirical risk: Predictive risk:
L= 3= F@)?  R(P)=EI(f(X) - F(X)]

Question: Can we provably improve the predictive risk by gradient descent?
We analyze the risk especially for the single index model:

f (@) = o ((z,67))



Feature learning with optimization guarantee

1 = _ L+ T
Fan () \/—N;aia((x,wZ» Nk o(W'x)

We consider the proportional limit (n,d, N — oo with "/, — ¥, ¥/, = ¥,).

.o ) It allows to derive precise risk.
We evaluate predictive risk of one-step GD.

Take home message:
GD with Large step-size can outperform any

Dot: Simulation
a\" Solid line: Theory

random feature model by only one-step update. a

[Outline of our result]
> 11 = O(V/N) can get out of NTK regime and outperform

prediction risk

initialized CK ‘m,
random feature models. v oo -
> 1 = (1) can outperform the initial setting of W. e ‘\"-\_\I
» n = o(1) does not improve the performance.

103 10%
sample size n



Ridge regression with RF

Feature learning vs Random feature

Random features (without feature learning):

« Conjugate kernel at initialization:

Precise asymptotics has been

1 T extensively studied. (e.g.,
gbCK (gj) — —O'(WO x) [Louart, Liao, and Couillet, 2018;
/N Mei and Montanari, 2019])

* NTK (Neural tangent kernel):

1

ONTK () = mVec(o’(WJx)xT)
ARF = alc;geﬂrgrin {Tll ;(yz — <CL, ¢RF($2)>)2 + 2&2} RF € {CK,NTK}
Trained feature:
1
Pox (T) = \/—NU(WJ@




Rank 1 property of first gradient step *

* The gradient G; can be approximated by rank one matrix.
= There appears “spike” in the spectral distribution of ;.

G, = —%XT K\/lﬁ (\;NJ(XWt)a - y) aT> ® 0’(XWt)]

(generally, this is not low rank due to the nonlinearlity of ¢”)

Theorem (Rank one approximation of gradient)

Remember that Go = —= (W, — Wy) (- Wi = Wy + 0V NGy)

Let 11 = E[ZU(Z)L p2 = \/E[U(z)2] — 7, where z ~ N(0,1).

Define A := XTyaT (rank one matrix), then we have

n\/_

log™(n)
IGo— Al S 2222 ol
with high probability for sufficiently large n,d, N.
W, = Wy + n X (rank one matrix).
= For large step size n, spike becomes more dominant.




Effect of large step-size update ~

Frequency
o o o
N w .b

©
o

©
o

Reference

Wy = Wo + 9V N(=Viw L(f{R)/2)

Theorem; almost rank 1
Spectral distribution of W,

Alignment of u; and B«

- B

0.1

Spectum of W, ‘ .
(remains unchanged) £

Alignment with the linear
component of f*.
(feature learning)

stimated signal

Eigenvalues



Limitation of RF

[El Karoui (2010); Ghorbani et al. (2019), Hu and Lu (2020), ..] Rxx(f) = E[(f*(X) — fxx (X))}

Theorem (Lower bound of predictive risk for RF)

If the step size is not large n = ©(1), then for any finite number steps t, we have

inf min{Rox (V) Ruric(V): Rexcer W} 2 [1Por 2y + 0p.a(1)

. . Nonlinear part cannot be trained!
Porf* =1 —P<x)f -

where P, is the projection operator in L*(Py) to the subspace
consisting of linear functions and constants.

Remark: The same is true for “rotational invariant kernel” [El Karoui (2010)].

This is because in high dimensional setting, a central limit theorem yields
1 1 - P
T _ T T T T (linear function
a ¢ck(x) = —=a o(Wy z;) % —=a (W, z; + p22) '
vIN ° vIN ’ Gaussian equivalence)



Improvement over the Initial CK -

® .
GD update with large step size @ True function

r Best linear model
@ (random feature, smallstép size GD)

Initial kernel _ .
Space of linear functions

« n = O(VN) (large learning rate):

Known as maximal update parameterization (uP) [Yang and Hu, 2020].
T = %I;% Ee,on0,1) |07 (&) — Egyon(o,nylo(nés + &2)]]

(measure for model misspecification) 0o =gt = erf
f*(z) = o*((x,B*)) IS assumed. * 1"K1ifo =0"=tanh.

Ry (A) < 167° + C(VTro; V2 +971) + 0,(1)

a2 Y1 g~ W,
Large learning rate yields feature learning and can be
better than the small step size regime if 7* < ||Ps1f*|I?.



Implications

Corollary  If ¢ = ¢* = erf, then t* = 0.
In particular, we have Ry, (1) = 0(y1 ") = 0(d/n).

10°%.
e Small step size
A ' ,:i .' ®-9 .9
- s e 20 [ S ]
- 10_]_ @ '.-.._. - S -
-% ---------- 'F;-':-:---rr;_-; ~ =~ Lower bound for RF models
o ®- 9o o .a.
o - n=0(1) -0-0.9 4
a PR
. n=0('N) G(d/n)
——— #* 22 /
10724 !;;;f) I 4| Outperform any RF models
] — n

104
sample size n

Predictive risk of ridge regression on CK obtained by one step GD (empirical
simulation, d = 1024): brighter color represents larger step size scaled asn = N¢ for
a € [0,1/2]. We chose g = ¢* =erf, ¢, = 2,1 =1073,and o, = 0.1.
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