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Success of deep learning 2

AlphaGo/Zero

Image recognition

Deep learning has shown 
great performances in the 
AI research field.
→ Why?

[Silver et al. (Google Deep Mind): Mastering the game of Go with deep 
neural networks and tree search, Nature, 529, 484—489, 2016]

[He, Gkioxari, Dollár, Girshick: Mask R-CNN, ICCV2017] 

[Brown et al. “Language Models are Few-Shot Learners”, NeurIPS2020]

[Alammar: How GPT3 Works - Visualizations and Animations, 
https://jalammar.github.io/how-gpt3-works-visualizations-
animations/]

Performance of few-shot learning 
against model size

Learning efficiency of 
few

 shot learning

Large language model

Generative models (diffusion models)

Jason Allen "Théâtre D'opéra
Spatial“ generated by Midjourney. 
Colorado State Fair’s fine art competition, 
1st prize in digital art category

[ChatGPT. OpenAI2022]

[Ho, Jain, Abbeel: Denoising Diffusion Probabilistic Models. 2020]

Generated by NovelAI

Stable diffusion, 
2022.



Outline 3

[Representation theory]
• Minimax optimality of diffusion model
Total variation distance and Wasserstein distance
Avoids curse of dimensionality

[Optimization]
• Mean field Langevin dynamics
Unifying frame-work 
(1) Time discretization, (2) Space discretization, (3) 

Stochastic gradient

[Kazusato Oko, Shunta Akiyama, Taiji Suzuki: Diffusion Models are Minimax Optimal 
Distribution Estimators. arXiv:2303.01861, 2023]

[Taiji Suzuki, Atsushi Nitanda, Denny Wu: Convergence of mean-field Langevin dynamics: 
Time and space discretization, stochastic gradient, and variance reduction. 2023]



Minimax optimality of diffusion model

4

[Kazusato Oko, Shunta Akiyama, Taiji Suzuki: Diffusion Models are Minimax 
Optimal Distribution Estimators. arXiv:2303.01861, 2023]

Kazusato Oko
(The University of Tokyo

/RIKEN-AIP)

Shunta Akiyama
(The University of Tokyo)



Diffusion model 5

Jason Allen "Théâtre D'opéra Spatial“ generated by Midjourney. 
Colorado State Fair’s fine art competition, 1st prize in digital art 
category

Generated by NovelAI

「An astronaut riding a 
horse in a photorealistic 
style」

DALL·E: [Aditya Ramesh, Mikhail 
Pavlov, Gabriel Goh, Scott Gray, 
Chelsea Voss, Alec Radford, Mark 
Chen, Ilya Sutskever: Zero-Shot Text-
to-Image Generation. ICML2021.] 
DALL·E2:[Aditya Ramesh, Prafulla 
Dhariwal, Alex Nichol, Casey Chu, 
Mark Chen: Hierarchical Text-
Conditional Image Generation with 
CLIP Latents. arXiv:2204.06125]

Stable diffusion, 2022.



Decoder：Diffusion model 6

Forward process：Convert the target distribution to a noise distribution (e.g., Gaussian)

Reverse process：Convert the noise distribution to the target distribution

[Vahdat, Kreis, Kautz: Score-based Generative Modeling in Latent Space. arXiv:2106.05931]

(𝑌𝑌𝑡𝑡 ∼ 𝑋𝑋𝑇𝑇−𝑡𝑡)

[Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Song et al., 2020; Ho et al., 2020; Vahdat et al., 2021]



Forward process 7

Forward process:

where 𝜇𝜇𝑡𝑡 = exp −𝑡𝑡 , 𝜎𝜎𝑡𝑡2 = 1 − exp −2𝑡𝑡 .

OU process

The forward process converges to the noise distribution (standard normal) 
exponentially:

[Vahdat, Kreis, Kautz: Score-based 
Generative Modeling in Latent Space. 
arXiv:2106.05931]

• Marginal distribution



Reverse process 8

Reverse process:

⇒ 𝑌𝑌𝑡𝑡 ∼ 𝑝𝑝𝑇𝑇−𝑡𝑡
[Haussmann & Pardoux, 1986]

(unknown)

Theorem (Girsanov’s theorem; Chen et al. (2023))

⇒ It suffices to estimate the score function 𝛻𝛻log(𝑝𝑝𝑡𝑡) as accurate as possible.

Approximated process (generative model):

(unknown)

(𝑁𝑁(0, 𝐼𝐼) is close to 𝑝𝑝𝑇𝑇)



Score matching 9

Observation (𝑛𝑛 data points 𝐷𝐷𝑛𝑛 = 𝑥𝑥𝑖𝑖 𝑖𝑖=1
𝑛𝑛 ):  

Empirical score matching loss:

Explicit form is availableCan be sampled via OU process 



Existing work on error analysis
• Reverse SDE characterization: Song et al. (2021)

[Approximation error analysis]
• KL-divergence bound via Girsanov’s theorem: Chen et al. 

(2022)

• Error bound with LSI: Lee et al. (2022a)
With smoothness: Chen et al. (2022) and Lee et al. (2022b)

• Error propagation with manifold assumption: Pidstrigach
(2022)

[Generalization analysis]
• Wasserstein dist bound (𝑛𝑛−1/𝑑𝑑) with manifold assumption:

De Bortoli (2022) 

10



is sufficiently smooth on the edge of the
support

Problem setting 11

Assumption 1
The true distribution 𝑝𝑝0 is supported on −1,1 𝑑𝑑 and                                                

with 𝑠𝑠 > ⁄1 𝑝𝑝 − ⁄1 2 + as a density function on −1,1 𝑑𝑑. 

Assumption2

Very smooth

Besov space

Besov space (𝐵𝐵𝑝𝑝,𝑞𝑞
𝑠𝑠 (Ω))

Smoothness Spatial inhomogeneity



is sufficiently smooth on the edge of the
support

Problem setting 12

Assumption 1
The true distribution 𝑝𝑝0 is supported on −1,1 𝑑𝑑 and                                                

with 𝑠𝑠 > ⁄1 𝑝𝑝 − ⁄1 2 + as a density function on −1,1 𝑑𝑑. 

Assumption2

Very smooth

Besov space

Besov space (𝐵𝐵𝑝𝑝,𝑞𝑞
𝑠𝑠 (Ω))

Smoothness Spatial inhomogeneity

Intuition Smoothness

Uniformity of smoothness



Convergence rate result 13

Theorem (Estimation error in TV-distance)

Let 𝑇𝑇 = 𝑛𝑛−𝑂𝑂(1),𝑇𝑇 = 𝑂𝑂(log(𝑛𝑛)). Then, the empirical risk minimizer �̂�𝑠
in DNN satisfies

This is minimax optimal, that is, it holds 

Although �̂�𝑠(𝑥𝑥, 𝑡𝑡) is a function with 𝑑𝑑 + 1-dimensional input, there appears “𝑑𝑑” in the 
bound instead of 𝑑𝑑 + 1. This is because Gaussian convolution induces smoothness. 

𝑇𝑇 𝑇𝑇



Low dimensional structure 14

The estimated distribution is never absolutely continuous 
to the target distribution.
→ Wasserstein distance

The support of the target distribution is in 
a low dimensional subspace. 

ℝ𝑑𝑑

ℝ𝑑𝑑′



𝑾𝑾𝟏𝟏-distance convergence rate 15

Theorem (Estimation error in W1-distance)

For any fixed 𝛿𝛿 > 0, by slightly changing the estimator, the empirical 
risk minimizer �̂�𝑠 in DNN satisfies

This is also known as minimax optimal (up to 𝛿𝛿) [Niles-Weed & Berthet
(2022)].

• 𝑑𝑑𝑑 appears instead of 𝑑𝑑: Diffusion model can avoid curse of dimensionality. 
• The minimax rate of Wasserstein distance is faster than that of TV distance, 

which makes it difficult to establish the bound. 
 We need more precise estimate of the score around 𝑡𝑡 = 0.

(TV) (W1)



Mean field Langevin dynamics
to optimize two-layer NN

16

Atsushi Nitanda
(Kyusyu Institute of 

Technology)

Denny Wu
(University of 

Toronto)

Generalization
ability Optimization

[Suzuki, Nitanda, Wu: Convergence of mean-field Langevin dynamics: Time and space 
discretization, stochastic gradient, and variance reduction. 2023]



Objective of mean field NN 17

convex

𝑭𝑭(𝝁𝝁)

Mean field Langevin dynamics: 

 Wasserstein gradient flow to minimize ℒ:

 SDE the Fokker-Planck equation of which corresponds to this Wasserstein GF:

Vanilla GLD: 

⇒ 𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿 = 𝐿𝐿



18

The first variation 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿:𝒫𝒫 × ℝ𝑑𝑑 → ℝ is defined as a continuous functional such as 

Definition (first variation)



MFLD for mean field NN 19

[Noise perturbation]

Loss function:

(escape from local min.)

Finite particle approximation:(distribution of 𝑋𝑋𝑡𝑡)Neuron 
ℎ𝑥𝑥(⋅)

𝑥𝑥 (vector field) (GLD to optimize the finite width neural network)



Other applications 20

• Nonparametric density estimation via MMD minimization

𝑘𝑘: positive definite kernel

: empirical distribution (training data)



• Variational inference to approximate Bayesian posterior

Mean field Langevin dynamics can be applied to several 
problems where a distribution is optimized.

where 𝑘𝑘𝜇𝜇 = ∫ 𝑘𝑘 𝑥𝑥,⋅ 𝜇𝜇(d𝑥𝑥) (kernel embedding).

(KSD: Kernel Stein Discrepancy from a posterior distribution)

(see also Chizat (2022,TMLR))



Summary of our research 21

Linear convergence of 
mean field Langevin:
[Nitanda, Wu, Suzuki (AISTATS2022)]
[Chizat (TMLR2022)]

• PDA [Nitanda, Wu, Suzuki: NeurIPS2021] 
• P-SDCA [Oko, Suzuki, Wu, Nitanda: 

ICLR2022]
• Infinite-dim extension [Nishikawa, Suzuki, 

Nitanda: NeurIPS2022]

Double loop method: 

Uniform-in-time propagation of chaos:
• Super log-Sobolev ineq.

[Suzuki, Nitanda, Wu (ICLR2023)]

• Leave-one-out type 
evaluation/Uniform-log-Sobolev
[Chen, Ren, Wang (arXiv2022)]

Single loop method:
Time-space discretization, 
stochastic gradient

Difficult：
Propagation of chaos (McKean, Kac,…, 60’s)

Infinite particles / Continuous time

Finite particle / Continuous time Finite particle / Discrete time

Finite particle / Discrete time

[Suzuki, Nitanda, Wu (2023)]



Single loop method 22

• Time discretization: 𝑡𝑡 → 𝑘𝑘𝑘𝑘
• Space discretization: 𝜇𝜇𝑡𝑡 is approximatd by 𝑁𝑁 particles

• Stochastic gradient: 𝛻𝛻 𝛿𝛿𝛿𝛿 𝜇𝜇
𝛿𝛿𝜇𝜇

→ 𝑣𝑣𝑘𝑘𝑖𝑖
𝜇𝜇𝑡𝑡 → �𝜇𝜇𝑘𝑘 = 1

𝑁𝑁∑𝛿𝛿𝑋𝑋𝑘𝑘
(𝑖𝑖)

where and
(stochastic gradient) (space discretization)

(time discretization)

 Noisy gradient descent on 2-layer NN with finite width.

(distribution of 𝑋𝑋𝑡𝑡)

𝑥𝑥

(vector field)



Uniform log-Sobolev inequality 23

𝑋𝑋𝑘𝑘
(1)

𝑋𝑋𝑘𝑘
(2)

𝑋𝑋𝑘𝑘
(𝑁𝑁) 𝒳𝒳𝑘𝑘 = 𝑋𝑋𝑘𝑘

𝑖𝑖
𝑖𝑖=1

𝑁𝑁
∼ 𝜇𝜇𝑘𝑘

𝑁𝑁 : Joint distribution 
of 𝑁𝑁 particles.

Potential of the joint distribution 𝝁𝝁𝒌𝒌
(𝑵𝑵) on ℝ𝒅𝒅×𝑵𝑵 :

where

(Fisher divergence)
where

 The finite particle dynamics is the Wasserstein gradient flow that minimizes       .

(Approximate) Uniform log-Sobolev inequality [Chen et al. 2022]

Recall [Chen, Ren, Wang. Uniform-in-time propagation of chaos 
for mean field langevin dynamics. arXiv:2212.03050, 2022.]

For any 𝑵𝑵,

Reference



Convergence analysis 24

Time
discr.

Space
discr.

Stochastic
approx.

Under smoothness and boundedness of the loss function, it holds that
Suppose that 𝑝𝑝𝜇𝜇 satisfies log-Sobolev inequality with a constant 𝛼𝛼.
Theorem (One-step update)

: proximal Gibbs measure

1. 𝐹𝐹:𝒫𝒫 → ℝ is convex and has a form of 𝐹𝐹 𝜇𝜇 = 𝐿𝐿 𝜇𝜇 + 𝜆𝜆1𝔼𝔼𝜇𝜇 𝑥𝑥 2 .
2. (smoothness) 𝛻𝛻𝛿𝛿𝛿𝛿 𝛿𝛿

𝛿𝛿𝛿𝛿 𝑥𝑥 −𝛻𝛻𝛿𝛿𝛿𝛿 𝜈𝜈
𝛿𝛿𝛿𝛿 𝑦𝑦 ≤ 𝐶𝐶(𝑊𝑊2 𝜇𝜇, 𝜈𝜈 + 𝑥𝑥 − 𝑦𝑦 ) and

(boundedness) 𝛻𝛻𝛿𝛿𝛿𝛿 𝛿𝛿
𝛿𝛿𝛿𝛿 𝑥𝑥 ≤ 𝑅𝑅.

Assumption:

[Chen, Ren, Wang. Uniform-in-time propagation of chaos for mean field langevin dynamics. arXiv:2212.03050, 2022.]
Space discretization is shown through the uniform-log-Sobolev inequality shown by Chen et al. 2022.

[Suzuki, Nitanda, Wu (2023)]



Computational complexity 25

Time
discr.

Space
discr.

Stochastic
approx.

• SG-MFLD
(finite sum),

(stochastic gradient)

Iteration complexity:

to achieve 𝜖𝜖 + 𝑂𝑂(𝛼𝛼/(𝜆𝜆2𝑁𝑁)) accuracy.

By setting                                                          , 
the iteration complexity becomes 

(Mini-batch size = 𝐵𝐵)

 𝐵𝐵 = 𝑛𝑛 ∧ 𝛼𝛼/(𝜆𝜆2𝜖𝜖) is the optimal mini-batch size.



Summary 26

We are still at a primitive stage.
Hope to have collaborations!

[Representation theory]
• Minimax optimality of diffusion model

Total variation distance and Wasserstein distance
Avoids curse of dimensionality

[Optimization]
• Mean field Langevin dynamics

Unifying frame-work 
 (1) Time discretization, (2) Space discretization, (3) Stochastic 

gradient

[Kazusato Oko, Shunta Akiyama, Taiji Suzuki: Diffusion Models are Minimax Optimal Distribution Estimators. 
arXiv:2303.01861, 2023]

[Taiji Suzuki, Atsushi Nitanda, Denny Wu: Convergence of mean-field Langevin dynamics: Time and space discretization, 
stochastic gradient, and variance reduction. 2023]

Deep learning theory
Representation ability + Optimization



Appendix

27



B-spline basis decomposition 28

Cardinal B-spline of order m:

→ Piece-wise polynomial of order m.

• B-spline decomposition of a Besov function 𝑝𝑝0

Approximate each term by DNNs

Tensor product B-spline:



Cardinal B-spline interpolation (DeVore & Popov, 1988)

• Atomic decomposition:

29

such that 
(where )

(Norm equivalence)
DNN can approximate each 
B-spline basis efficiently.

(see also Bolcskei, Grohs, Kutyniok, Petersen: Optimal Approximation with Sparsely Connected Deep Neural Networks. 2018)

k=0

k=1

k=2

k=3

Scale j=1

j=1 j=2

j=1 j=2 j=3 j=4

𝛼𝛼0,1

𝛼𝛼1,1 𝛼𝛼1,2

𝛼𝛼2,1 𝛼𝛼2,4𝛼𝛼2,3𝛼𝛼2,2

Wavelet/multi-resolution expansion

𝑁𝑁 terms (should be appropriately chosen depending on 𝑓𝑓)

𝑓𝑓 ∈ 𝐵𝐵𝑝𝑝,𝑞𝑞
𝑠𝑠 can be decomposed into



Proof outline (1) 30

• B-spline decomposition of a Besov function 𝑝𝑝0

Approximate each term by DNNs

• Diffused B-spline basis expansion of 𝑝𝑝𝑡𝑡

Decompose

=:𝐸𝐸𝑎𝑎𝑗𝑗,𝑏𝑏𝑗𝑗 (𝑥𝑥, 𝑡𝑡) Diffused B-spline
 We approximate Diffused B-splines by DNNs.



Approximation error of Diffused B-spline31

There exists a deep neural network �𝜙𝜙:ℝ𝑑𝑑 × ℝ+ → ℝ𝑑𝑑 such that

with depth 𝐿𝐿 = 𝑂𝑂 log4 𝜖𝜖−1 , width 𝑊𝑊𝑖𝑖 = 𝑂𝑂(log6(𝜖𝜖−1)), sparsity (# of 
non-zero parameters) 𝑆𝑆 = 𝑂𝑂(log(𝜖𝜖−1)), and ℓ∞-norm bound 𝐵𝐵 =
𝑂𝑂(exp(𝑂𝑂(log2 𝜖𝜖−1 ))) on parameters.

Lemma (Approximation error of diffused B-spline)

≤ 𝑁𝑁−𝑠𝑠/𝑑𝑑≤ O(𝑒𝑒−𝐿𝐿)

: Deep neural network



Error bound of score 32

Non-smooth Smooth Very smooth
𝑡𝑡𝑇𝑇 𝑡𝑡∗ �𝑇𝑇

• Bound by diffused B-spline approximation

• A tighter bound on the smooth part  (𝑡𝑡 > 𝑡𝑡∗)

(take 𝑘𝑘 = 𝑠𝑠 + 1)

 Similar argument is applied to 𝛻𝛻𝑝𝑝𝑡𝑡:

- Useful for W1 bound.
- Smoothness around the 
edge (A2) is not requires.



Error decomposition 33

Score matching loss

Truncation loss
at 𝑇𝑇.  

Truncation loss
at 𝑇𝑇. 

𝑇𝑇 𝑇𝑇

Bias Variance



Bound for W1 distance 34

𝑡𝑡
𝑇𝑇 �𝑇𝑇 = 2𝐾𝐾∗𝑡𝑡∗𝑡𝑡∗ 2𝑡𝑡∗ 4𝑡𝑡∗

𝑌𝑌𝑇𝑇−𝑡𝑡
𝑖𝑖

𝑡𝑡
�̂�𝑠𝛻𝛻log(𝑝𝑝𝑡𝑡)

𝑡𝑡𝑖𝑖 (= 2𝑖𝑖𝑡𝑡∗)

(negligible) (exp(−𝑇𝑇))

,



Implementable discretization 35

Finite sample approximation

• 𝑖𝑖𝑗𝑗 ∼ Unif({1, … , n})
• 𝑡𝑡𝑗𝑗 ∼ Unif([𝑇𝑇,𝑇𝑇])
• 𝑥𝑥𝑡𝑡𝑗𝑗,𝑗𝑗 ∼ 𝑝𝑝𝑡𝑡𝑗𝑗(⋅ |𝑥𝑥𝑖𝑖𝑗𝑗)

Prop

is sufficient to attain the same convergence rate.



Mean field limit of 2-layer NN 36

𝑀𝑀 → ∞

Particles move to fit 
the model to the data.

(movement of each particle)

(distribution)

…

• 2-layer neural network:

• Overparameterization (Mean field limit):
Non-linear with respect to parameters 𝑟𝑟𝑗𝑗,𝑤𝑤𝑗𝑗 𝑗𝑗=1

𝑀𝑀 .

Linear with respect to the prob. measure 𝜇𝜇 .

Optimization of 𝑓𝑓 ⇔ Optimization of 𝜇𝜇



GLD as a Wasserstein gradient flow37

: Distribution of 𝑋𝑋𝑡𝑡 (we can assume it has a density)

PDE that describes 𝜇𝜇𝑡𝑡’s dynamics [Fokker-Planck equation]:

[linear w.r.t. 𝝁𝝁]

: Stationary distribution

This is the Wasserstein gradient flow to minimize the following objective:



Difficulty
• SDE of interacting particles (McKean, Kac,…, 60’)

38

𝑡𝑡 = 1 𝑡𝑡 = 2 𝑡𝑡 = 3 𝑡𝑡 = 4

Finite particle approximation error can propagate through time.
→ It is difficult to bound the perturbation uniformly over time.

The particles behave as if they are independent 
as the number of particles increases to infinity. 

Propagation of chaos [Sznitman, 1991; Lacker, 2021]:



Feature learning 
with one-step gradient descent

39

[Ba, Erdogdu, Suzuki, Wang, Wu, Yang: High-dimensional Asymptotics of Feature 
Learning: How One Gradient Step Improves the Representation. NeurIPS2022]

Generalization
ability Optimization



Problem setting 40

Observation model:

where 𝑥𝑥𝑖𝑖 ∼ 𝑁𝑁 0, 𝐼𝐼 , 𝜖𝜖𝑖𝑖 ∼ 𝑁𝑁(0,1), and 𝑥𝑥𝑖𝑖 ∈ 𝐑𝐑𝑑𝑑.

 We fit 2-layer NN of mean field scaling: 

where 𝑎𝑎𝑖𝑖 ∼ 𝑁𝑁(0,1/𝑁𝑁) and 𝑊𝑊𝑖𝑖𝑗𝑗 ∼ 𝑁𝑁(0,1/𝑑𝑑).

Mean field regime 𝑂𝑂(1/𝑁𝑁)
(∵ 𝑎𝑎𝑖𝑖 = 𝑂𝑂𝑝𝑝(1/ 𝑁𝑁))

Empirical risk: Predictive risk:

Question: Can we provably improve the predictive risk by gradient descent?
We analyze the risk especially for the single index model: 

var var



Feature learning with optimization guarantee41

We consider the proportional limit (𝑛𝑛,𝑑𝑑,𝑁𝑁 → ∞ with ⁄𝑛𝑛 𝑑𝑑 → 𝜓𝜓1, ⁄𝑁𝑁 𝑑𝑑 → 𝜓𝜓2).

We evaluate predictive risk of one-step GD.

 𝜼𝜼 = 𝚯𝚯( 𝑵𝑵) can get out of NTK regime and outperform 
random feature models.

 𝜼𝜼 = 𝚯𝚯(𝟏𝟏) can outperform the initial setting of 𝑊𝑊.
 𝜼𝜼 = 𝒐𝒐(𝟏𝟏) does not improve the performance.

Dot: Simulation
Solid line: Theory

[Outline of our result]

Take home message: 
GD with Large step-size can outperform any
random feature model by only one-step update.

It allows to derive precise risk.



Ridge regression with RF 42

• Conjugate kernel at initialization:

• NTK (Neural tangent kernel):

Random features (without feature learning):

RF ∈ {CK,NTK}

Precise asymptotics has been 
extensively studied. (e.g., 
[Louart, Liao, and Couillet, 2018; 
Mei and Montanari, 2019])

Feature learning   vs  Random feature

Trained feature: 



Rank 1 property of first gradient step
• The gradient 𝐺𝐺𝑡𝑡 can be approximated by rank one matrix. 
⇒ There appears “spike” in the spectral distribution of 𝑊𝑊1. 

43

(generally, this is not low rank due to the nonlinearlity of 𝜎𝜎𝑑)

Theorem (Rank one approximation of gradient)

with high probability for sufficiently large 𝑛𝑛,𝑑𝑑,𝑁𝑁.

Remember that

Let 

Define (rank one matrix), then we have

𝑊𝑊1 = 𝑊𝑊0 + 𝑘𝑘 × (rank one matrix). 
⇒ For large step size 𝑘𝑘, spike becomes more dominant. Spike

Reference
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Spectum of 𝑾𝑾𝟎𝟎
(remains unchanged)

Alignment with the linear 
component of 𝑓𝑓∗. 
(feature learning)

Spectral distribution of 𝑊𝑊1

Estimated signal

Theorem: almost rank 1

Reference
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Theorem (Lower bound of predictive risk for RF)

where 𝑃𝑃≤1 is the projection operator in 𝐿𝐿2(𝑃𝑃𝑋𝑋) to the subspace 
consisting of linear functions and constants.

[El Karoui (2010); Ghorbani et al. (2019), Hu and Lu (2020), ...]

This is because in high dimensional setting, a central limit theorem yields
(linear function; 
Gaussian equivalence)

Remark: The same is true for “rotational invariant kernel” [El Karoui (2010)].

(1) Random feature models and 
(2) GD updates with small learning rate
can learn only linear functions in the proportional 
limit.

Nonlinear part cannot be trained!

If the step size is not large 𝑘𝑘 = Θ(1), then for any finite number steps 𝑡𝑡, we have 
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• 𝑘𝑘 = Θ( 𝑁𝑁) (large learning rate):

(measure for model misspecification)

⁄𝑛𝑛 𝑑𝑑 → 𝜓𝜓1, ⁄𝑁𝑁 𝑑𝑑 → 𝜓𝜓2

Large learning rate yields feature learning and can be 
better than the small step size regime if 𝜏𝜏∗ ≪ 𝑃𝑃>1𝑓𝑓∗ 2.

Known as maximal update parameterization (𝜇𝜇P) [Yang and Hu, 2020].

• 𝜏𝜏∗ = 0 if 𝜎𝜎 = 𝜎𝜎∗ = erf.
• 𝜏𝜏∗ ≪1 if 𝜎𝜎 = 𝜎𝜎∗ = tanh.is assumed.

Initial kernel
Space of linear functions

True function

Best linear model 
(random feature, small step size GD)

GD update with large step size 
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If 𝜎𝜎 = 𝜎𝜎∗ = erf, then 𝜏𝜏∗ = 0. 
In particular, we have 𝑅𝑅𝑊𝑊1 𝜆𝜆 = Θ 𝜓𝜓1−1 = Θ 𝑑𝑑/𝑛𝑛 .

Predictive risk of ridge regression on CK obtained by one step GD (empirical 
simulation, 𝑑𝑑 = 1024): brighter color represents larger step size scaled as 𝑘𝑘 = 𝑁𝑁𝛼𝛼 for 
𝛼𝛼 ∈ [0,1/2]. We chose 𝜎𝜎 = 𝜎𝜎∗ = erf, 𝜓𝜓2 = 2, 𝜆𝜆 = 10−3, and 𝜎𝜎𝜖𝜖 = 0.1.

Corollary

Θ(𝑑𝑑/𝑛𝑛)

Small step size

Lower bound for RF models

Outperform any RF models
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