

RIKEN-AIP & PRAIRIE Joint Workshop

Efficient Machine Learning with Tensor Networks

Qibin Zhao

Tensor Learning Team RIKEN AIP https://qibinzhao.github.io

Mar 21, 2023

Trends of Machine Learning

Large Model

OpenAl's GPT-3

Dataset: 45 TB text data

- **OpenAI's GPT-3**
- 28 TFLOPS V100
- 355 GPU years
- **-** \$4.6 M

Challenges from data perspective

Learning knowledge from incomplete & limited data, noisy data, or adversarial corrupted data

3 order tensor

Recommender system Image inpainting/denoising

graph prediction

Challenges from model perspective

- Complex architecture, large number of parameters, heavy computation for training and inference.
- Lack of interpretability and lack of robustness to adversarial attacks.
- How to dramatically increase model capacity without significant increasing of model size?

Multi-dimensional, Incomplete and Noisy Data

Task: learning from limited tensor entries to predict unobserved entries

- Challenges:
 - Data efficiency
 - Scalability and efficient optimization algorithms
 - Exact recovery guarantee

Tensor Completion

Objective:

$$\min_{\mathcal{X}} \| \Omega * (\mathcal{Y} - \mathcal{X}) \| + R(\mathcal{X})$$

Fitting error Structure Regularizer

Popular approaches:

Low-rankness assumption (convex, not scalable)

$$R(\mathcal{X}) = \|\mathcal{X}\|_*$$

• Decomposition based approach (optimal rank selection) $R(\mathcal{X}) = \|\mathcal{X} - \mathrm{TN}(\mathcal{G}_1, \dots, \mathcal{G}_N)\|$

Prior knowledge (smoothness, non-negative), side information

Low-rankness under Linear Transformation

Image Denoising: large scale image is not globally low-rank

(He et al., CVPR 2019)

(Li et al, CVPR 2019)

Non-uniform missing patterns (slice, fiber missing)

Enhanced low-rank modeling for tensor SVD

(A. Wang et al., AAAI 2020)

- Problem: t-SVD has mode sensitivity.
- Two mode invariant tubal nuclear norms with error bound

Mode sensitivity of TNN [|J']].

Tensor Networks with Low-rank Cores

(L. Yuan et al., AAAI 2019)

- Tensorization allows for capturing complex structural dependency
- Efficient optimization by combining decomposition and nuclear norm minimization

What is Tensor Network?

https://tensornetwork.org

- Representation of N-order tensor as contractions of O(N) smaller tensors
- Physics: to describe entangled quantum many-body systems

Tensor Ring Decomposition

(Zhao et al., arXiv 2016, ICASSP 2019)

Classification of incomplete data

Problem: learning classification model from incomplete data $(x_n^{miss}, y_n), n = 1, ..., N$

Reconstruction of incomplete data

Sequential approach (completion + classification)

- Cannot ensure statistical consistence of classifier
- Exact recovery is not guaranteed because label information is ignored

Simultaneous reconstruction and classification

(Caiafa et al., CVPR workshop 2021)

Learning sparse representation and classifier collaboratively (NNs + sparse coding)

$$J(\Theta, \mathbf{D}, \mathbf{s}_{i}) = \frac{1}{I} \sum_{i=1}^{I} \{J_{0}(\Theta, \hat{\mathbf{x}}_{i}, y_{i}) + \lambda_{1}J_{1}(\mathbf{D}, \mathbf{s}_{i}) + \lambda_{2}J_{2}(\mathbf{s}_{i})\}$$
Classification loss (e.g. crossentropy) for any classifier (deep network)
$$Representation error J_{1}(\mathbf{D}, \hat{\mathbf{s}}_{i}) = \frac{M}{N} \|\mathbf{m}_{i} * (\mathbf{x}_{i} - \mathbf{D}\mathbf{s}_{i})\|^{2}$$

$$Promotes sparsity J_{2}(\mathbf{s}_{i}) = \frac{1}{N} \|\mathbf{s}_{i}\|_{1}$$

Sufficient condition

$$\epsilon > |\langle \mathbf{w}^{m}, \mathbf{x}^{m} \rangle| + |\langle \mathbf{w}^{m}, \hat{\mathbf{x}}^{m} \rangle|$$

$$f(\mathbf{w}^{m}, \mathbf{x}^{m})| + |\langle \mathbf{w}^{m}, \hat{\mathbf{x}}^{m} \rangle|$$

$$f(\mathbf{w}^{m}, \mathbf{x}^{m})|$$

$$f(\mathbf$$

Time series data with missing time points

Task: Given tensorial time series with **irregular/missing time steps**, to train a model for prediction on **continuous time points**.

Examples: videos with missing frames, relations between stock market prices of many companies, etc

Challenges:

- Tensorial NN/RNN (Bai et al. 2017): Incapable of handling irregular time steps, and prediction on decimal time points
- Neural ODE (Chen et al. NeurIPS 2018): Ignoring spatial structure information, large number of parameters

Tensor Neural ODE

(Bai et al., IJCNN 2021)

We directly process the tensorial time series $\{\mathbf{y}_t\}_{t \in [0, T]}, \mathbf{y}_t \in \mathbb{R}^{I_1 \times \cdots \times I_N}$, proposing tensor neural ODE (TENODE)

$$\frac{\mathrm{d}\boldsymbol{\mathcal{Y}}(t)}{\mathrm{d}t} = f_{\boldsymbol{\Theta}}(\boldsymbol{\mathcal{Y}}(t), \boldsymbol{\mathfrak{X}}(t), t)$$

with the control input $\mathfrak{X}(t)$ and the initial condition $\mathfrak{Y}(0) = \mathfrak{Y}_0$. Parameter size: from $O(I^{2N})$ of neural ODE to $O(NI^2)$

Figure 5: Architecture Overview: Tensor neural ODE (TENODE)

Removing adversarial perturbations from data

Tensor completion can destroy adversarial perturbations [Yang et al. ICML 2019]

Defending GNNs via tensor-based robust graph aggregation

Parameter efficient modeling via Tensor Networks

Model Compression

[Novikov et al., NeurIPS 2015]

Higher-order latent factor analysis

(Tao et al., ACML 2021)

$$oldsymbol{y} = oldsymbol{W}oldsymbol{\eta} + oldsymbol{\epsilon}, \quad oldsymbol{\epsilon} \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\Sigma}),$$

• Given higher-order data $\mathcal{Y} \in \mathbb{R}^{P_1 \times \cdots \times P_D}$, marginalize η gives $\mathcal{Y} \sim \mathcal{N}(\mathbf{0}, \mathcal{V})$

Covariance of vectors: $V_{ij} = cov(y_i, y_j)$. Covariance of tensors: $V_{i_1i_2i_3j_1j_2j_3} = cov(\mathcal{Y}_{i_1i_2i_3}, \mathcal{Y}_{j_1j_2j_3})$.

TN representation of parameter W

TN representation of inputs

Mapping input data into TN representation

Accuracy of 99.03% on MNIST by one layer

Supervised Learning with Quantum-Inspired Tensor Networks [Stoudenmire et al., NIPS 2016]

 $\mathcal{O}(mdr^2P)$

Polynomially enhanced capacity with linearly increasing number of parameters

Tensor-Power Recurrent Models

(Li et al., AISTATS 2021)

Large p leads to long memory, small p leads to short memory

Tensor Networks in Deep Learning

Full-connected network $\mathcal{Y} = \langle \mathcal{W}, \phi(\mathcal{X}) \rangle = \langle \mathbf{O} - \mathbf{O}$

Regression network (Kossaifi et al., 2020)

Convolutional network (Wang et al., 2019)
$$\begin{split} \mathcal{Y} &= \langle \mathcal{W}, \phi(\mathcal{X}) \rangle = \, < \, \bigvee \, \phi(\mathcal{X}) \rangle \\ \mathcal{Y} &= \langle \mathcal{W}, \phi(\mathcal{X}) \rangle = \, < \, \bigvee \, \phi(\mathcal{X}) \rangle \, , \phi(\mathcal{X}) \rangle \end{split}$$

Which is the optimal TN structure for machine learning tasks?

Tensor Network Structure Search (TN-SS)

TN Structure Search

*The dangling edges are ignored.

Image source: https://staffwww.dcs.shef.ac.uk/people/H.Lu/feeler.html

Understanding CNN from Volterra Convolution Perspective (Li et al. JMLR 2022)

Theorem: Most convolutional neural networks can be interpreted as a form of Volterra convolutions.

NOT n-dimensional convolution

Black-box Attack by Volterra Convolution

(Li et al. JMLR 2022)

Well trained CNN - VC representation

- Direct computation (white box) or training a VC network by proxy kernels (black box)
- The perturbation computed by attacking VC can also attack original CNN.

Upper bound w.r.t. perturbation

Theorem 19 Assume input signal is \mathbf{x} , and the perturbation is ϵ , the approximated neural network is $f(\mathbf{x}) = \sum_{n=0}^{N} \mathbf{H}_n * \mathbf{x}^n$, we have

$$\|f(\mathbf{x}+\epsilon) - f(\mathbf{x})\|_{2} \le \min\left(\sum_{n=0}^{N} \|\mathbf{H}_{n}\|_{2} \sum_{k=0}^{n-1} \left(\frac{en}{k}\right)^{k} \|\mathbf{x}\|_{1}^{k} \|\epsilon\|_{1}^{n-k}, \\ \sum_{n=0}^{N} \|\mathbf{H}_{n}\|_{1} \sum_{k=0}^{n-1} \left(\frac{en}{k}\right)^{k} \|\mathbf{x}\|_{2k}^{k} \|\epsilon\|_{2(n-k)}^{n-k}\right), \quad (34)$$

where $e = 2.718281828 \cdots$, the base of the natural logarithm.

Computational Efficiency

Discovering efficient algorithms in mathematics

- Matrix multiplication: ubiquitous in NNs and modern computing
 - Developing computing hardware (large amounts of time and money)
 - Finding the fastest algorithm (50-year-old open question, difficult problem in mathematics)
 Standard Strassen's
- Example: 2 x 2 matrices

 $\begin{bmatrix} a_{1,i} & a_{1,i} \\ & & \\ a_{x,i} & a_{x,x} \end{bmatrix} \times \begin{bmatrix} b_{1,i} & b_{1,i} \\ & & \\ b_{x,i} & b_{x,x} \end{bmatrix} = \begin{bmatrix} c_{1,i} & c_{1,i} \\ & & \\ c_{i,i} & c_{x,x} \end{bmatrix}$

- Unsolved problem in larger matrix cases
- Automatic algorithm discovery by AI

[Fawzi et al. Nature 2022]

algorithm	algorithm		
$h_l = a_{l,l} b_{l,l}$	$h_{1} = (a_{2,1} + a_{2,2}) (b_{1,1} + b_{2,1})$		
$h_a = a_{a,z} b_{z,z}$	$h_2 = (a_{E,1} + a_{2,2}) b_{2,1}$		
$h_3 = a_{l,s} b_{g_{l,l}}$	$h_s = a_{l,s} \left(\boldsymbol{b}_{l,s} \cdot \boldsymbol{b}_{s,s} \right)$		
$h_4 = a_{i,2} \ b_{B,t}$	$h_{i} = a_{k,i} \left(-b_{i,i} + b_{k,i} \right)$		
$h_{\delta} = a_{\varepsilon,t} b_{t,t}$	$h_3 = (a_{1,1} + a_{1,2}) b_{2,2}$		
$h_{\theta} = a_{\theta,t} b_{t,t}$	$h_i = (-a_{i,i} + a_{i,i}) (b_{i,i} + b_{i,i})$		
$h_7 = a_{\theta, \theta} \ b_{\theta, 1}$	$h_7 = (a_{1.5} - a_{2,1})(b_{2.1} + b_{2.2})$		
$h_s = a_{\mathbf{e},s} \ b_{s,s}$			
$\mathbf{c}_{I,I} = h_2 + h_3$	$\boldsymbol{c}_{i,i} = h_i + h_i \cdot h_i + h_j$		
$\mathbf{c}_{t,s} = h_s + h_t$	$\mathbf{c}_{i,s} = h_i + h_s$		
$\mathbf{c}_{\mathbf{R},\mathbf{I}} = {}^{\dagger} \boldsymbol{\varepsilon}_{S} + h_{\gamma}$	$\boldsymbol{c}_{t,i} = h_i + h_i$		
$c_{e,e} = h_{\sigma} + h_{\sigma}$	$c_{z,z} = h_i \cdot h_z + h_z + h_z$		

AlphaTensor: Discovering novel algorithms using Tensor Decomposition

Rank of CPD determines the minimum number of multiplications

[Fawzi et al. Nature 2022]

AlphaTensor: Discovering novel algorithms in mathematics

Size (n, m, p)	Best method known	Best rank known	AlphaTe Modular	nsor rank Standard
(2, 2, 2)	(Strassen, 1969) ²	7	7	7
(3, 3, 3)	(Laderman, 1976) ¹⁵	23	23	23
(4, 4, 4)	$(Strassen, 1969)^2$ (2, 2, 2) \otimes (2, 2, 2)	49	47	49
(5, 5, 5)	(3, 5, 5) + (2, 5, 5)	98	96	98

- Discovered algorithm outperforms the two-level Strassen's algorithm (best human knowledge).
- One week later, Manuel Kauers and Jakob Moosbauer beat AlphaTensor (5 x 5 matrix , 96 -> 95). [Kauers et al. ArXiv 2022]

[Fawzi et al. Nature 2022]

Quantum Machine Learning

- Limited qubits with small scale data and model.
- Performance on ML tasks cannot compete with classical ML.

https://blog.tensorflow.org/2020/08/layerwise-learning-for-quantum-neural-networks.html

Summary

- TNs are powerful tools for representation of high-dimensional structured data.
- TNs are efficient reparameterization of deep learning models.
- However, there are some problems need to further solved prior to the real-world applications, such as TN-SS.
- Robustness to adversarial attacks, and interpretability of TN based models.
- Quantum machine learning might be potentially promising.

Acknowledgements

Chao Li

Jianfu Zhang

Andong Wang

Zerui Tao

Mingyuan Bai

Andrzej Cichocki

Toshihisa Tanaka Ces

Cesar F. Caiafa

Tatsuya Yokota

Yubang Zheng