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Statistics and Machine Learning: Methodology and Applications

Inductive inference, Resampling methods, Information geometry
Generalization error under Missing, Covariate-shift, etc.

Multi-modal data representation, Graph Embedding, and Multivariate Analysis
Network growth mechanism (Preferential attachment and fitness)
Phylogenetics, Gene expression (hierarchical clustering)

Image, word embedding (search and reasoning)

Multimodal Eigenwords (Fukui, Oshikiri and Shimodaira, Textgraphs 2017)

* A multimodal word embedding that jointly embeds words and
corresponding visual information

* We employed Cross-Domain Matching Correlation Analysis
(CDMCA; Shimodaira 2016) for extending a CCA-based word
embedding (Dhillon et al. 2015) to deal with complex associations

Our proposed method: Eigenwords
Context Word
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- “day” + “night”

- “brown™ + “white” =

Probabilistic Multi-view Graph Embedding (PMvGE)
(Okuno, Hada and Shimodaira, arXiv:1802.04630)

Multi-view feature learning with many-to-many associations via
neural networks for predicting new associations
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Strength of association (=0) Neural network data vector (in view-d)

View-D RPD

Theorem (universal approximation): -
Inner product + Neural networks AR

= Arbitrary similarity + Arbitrary transformation s e
(Mercer’s theorem + universal approximation of NN)

Advantages:

(1) PMvGE with neural networks is proved to be highly expressive.

(2) PMvGE approximately non-linearly generalizes CDMCA
(Shimodaira 2016, Neural Networks) which already generalizes various
existing methods such as CCA, LPP, and Spectral graph embedding.

(3) Likelihood-based estimation of neural networks is efficiently
computed by mini-batch Stochastic Gradient Descent.

Selection region {,

Selective inference (Terada and Shimodaira, arXiv:1711.00949)

Motivation : Assessing the confidence of each obtained cluster
Consider approx. unbiased p-values as frequentist confidence measures
Null hypothesis = obtained cluster is NOT true

Example : lung data (73 tumors, 916 genes; Garber et al., 2001)

Pvclust (Suzuki and Shimodaira, 2006)
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for pvclust

(1) Large sample theory with “nearly parallel surfaces”
h(u) = ho + hju; + hijuiuj + hijkuinuk + .. n % OO
]’LO = 0(1), hz = O(n_1/2), hij = O(n_1/2), hijk = O(n_l), c

Two asymptotic theories

vt S ={(w,v) [v=—s(u)}

Smooth surfacd

(u,v) are O(y/n), but hg = O(n'/?), h; = O(1) are multiplied by O(n~1/2)
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(95\\ \ s(u) —h(u)  (2) Asymptotic theory of “nearly flat surfaces”

OH

I Hypothesis region

supesn [h(w)| = ON), fym [h(w)] du < 00, [ |Fh(w)] de < o

H = {(u,v) | v < —h(u)} (Shimodaira 2008) \”"% A — 0

Algorithm : Computing approx. unbiased selective p-values

Th eorem (Iarge Sample theo rV): 1: SBpecify fgggral n’ € N values, and set 02 = n/n’. Set the number of bootstrap replicates
, say, .
Boundary su rfaces Of H and S are 2: For each n’, perform bootstrap resampling to generate Y* for B times and compute

smooth and “nearly parallel”,

a,2(Hly) = Cy /B and a,2(S|y) = Cs/B by counting the frequencies Cy = #{Y* € H}
and Cg = #{Y™ € S}. (We actually work on X*, instead of Y*.) Compute v 2(H|y) =
0@~ (a,z2 (Hly)) and 1,2 (Sly) = 0@~ (a2 (Sly)).

= The proposed p_value |S 3: Estimate parameters B8y (y) and Bg(y) by fitting models Model f|tt|ng to pS|

second order accurate with error O(n ")
Theorem (nearly flat surfaces):

Vo2 (Hly) = ¢ou(0?|Br)|and th,2 (S|y) = ¢s(0?|Bs),

respectively. The parameter estimates are denoted as Sg (y) and Bs (y). If we have several
candidate models, apply above to each and choose the best model based on AIC value.

Boundary surfaces are “nearly flat”,
approaching flat but allowing non-smooth
such as cones and polyhedra

= the proposed p-value is justified

as unbiased with error O()\?)

Key point: Multiscale Bootstrap

v' Low computational cost : O(B)
v' Double bootstrap method has same

4: Approximately unbiased p-values of selective inference (pgr) and non-selective inference
(pau) are computed by one of (A) and (B) below.

(A) Extrapolate 2 (H|y) and 1,2 (S|y) to 02 = —1 and 0, respectively, by

Extrapolation |, = vp(=118x ()] and 25 = s (0|8s (),

Non-selective

Slzg) | VY TTITTITTOTTT ! p-value
pa(HIS.0) = 5o "

and then compute p-values by

Selective
p-value

((B) Specify k € N, 02,02, > 0 (e.g., k = 3 and 02 | = 02 = 1). Extrapolate ¢,2(H|y)
and _2(S]y) to 2 = —1 and 0, respectively, by

2k = e k(1B (Y),0% 1) and 251 = v5.1(0|8s(y), od),

(Shimodaira, 2002; 2004)

where the Taylor polynomial approximation of ¢z at 72 > 0 with k terms is:
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and that of ¢g is defined similarly. Then compute p-values by

(I)(ZH k:)
psi,k(H|S,y) = = :
(H15,9) Q(zH. K + 25,k)

For non-smooth surfaces
(such as cones and polyhedra)

accuracy but high comp. cost O(B~)

and pav k(Hly) = ®(zm,k)-

PAFit: an R Package for Estimating Preferential Attachment and
Node Fitness in Temporal Complex Networks
(Pham, Sheridan and Shimodaira, arXiv:1704.06017)

What drives the growth of real-world networks across diverse fields?

Using two interpretable and universal mechanisms: (1) Talent: the intrinsic ability of a node
to attract connections (fitness 1;) and (2) Experience: the preferential attachment (PA)
function A;, governing the extent to which having more connections makes a node more/less
attractive for forming new connections in the future.

Probability that node v; gets a new edge attime t = Akz-(t)"?i

Key finding: Although both talent and experience contribute to the
growth process, the ratios of their contributions vary greatly.

Talent vs. Experience
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Contribution of experience (PAS)



