

数理統計学于一厶 下平 英寿 **Mathematical Statistics Team** Hidetoshi Shimodaira

Mathematical Statistics Team

Shimodaira Lab

Graduate School of Informatics, Kyoto University

Hidetoshi Shimodaira (Team Leader @ Kyoto Univ), Kazuki Fukui (RA), Akifumi Okuno (RA), Tetsuya Hada (RA), Masaaki Inoue (RA), Geewook Kim (RA), Thong Pham (Postdoctoral Researcher @ AIP), Tomoharu Iwata (Visiting Scientist @ NTT), Yoshikazu Terada (Visiting Scientist @ Osaka Univ), Shinpei Imori (Visiting Scientist @ Hiroshima Univ), Kei Hirose (Visiting Scientist @ Kyushu Univ)

Statistics and Machine Learning: Methodology and Applications

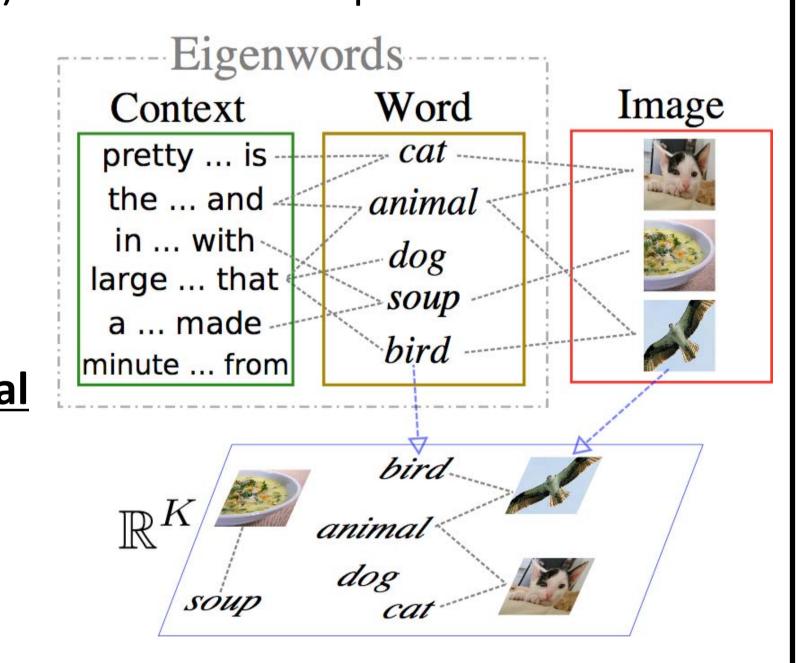
- Inductive inference, Resampling methods, Information geometry
- Generalization error under Missing, Covariate-shift, etc.
- Multi-modal data representation, Graph Embedding, and Multivariate Analysis
- Network growth mechanism (Preferential attachment and fitness)
- Phylogenetics, Gene expression (hierarchical clustering)
- Image, word embedding (search and reasoning)

Multimodal Eigenwords (Fukui, Oshikiri and Shimodaira, Textgraphs 2017)

- A multimodal word embedding that jointly embeds words and corresponding visual information
- We employed Cross-Domain Matching Correlation Analysis (CDMCA; Shimodaira 2016) for extending a CCA-based word embedding (Dhillon et al. 2015) to deal with complex associations

Our proposed method:

- Feature learning via graph embedding
- Feature vectors reflect both semantic and visual similarities
- The method enables multimodal vector arithmetic between images and words



Multimodal vector arithmetic:

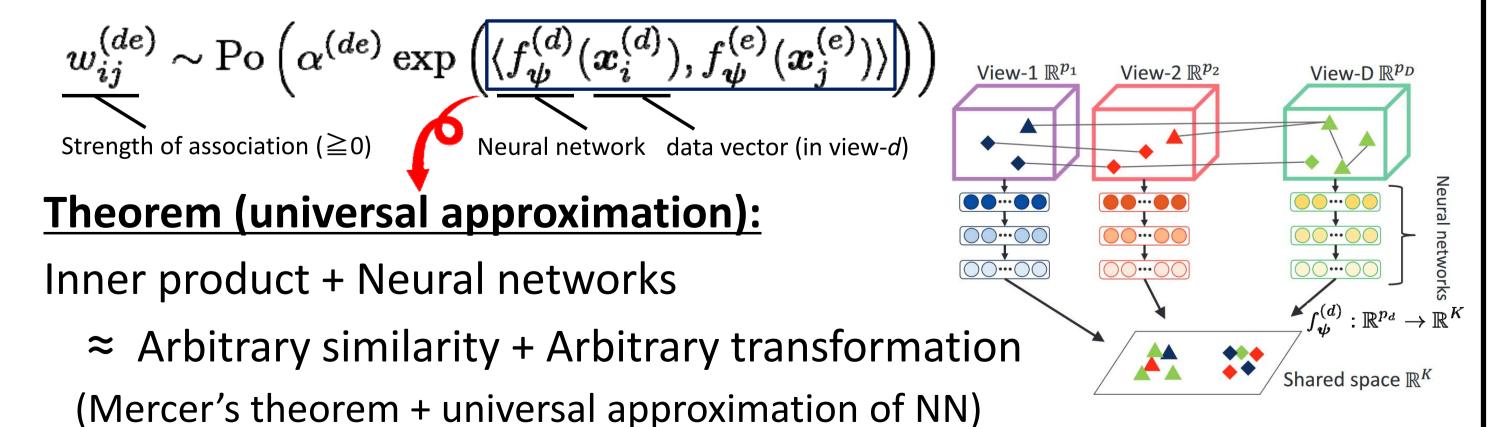
- "day" + "night" =

- "brown" + "white" =

Probabilistic Multi-view Graph Embedding (PMvGE)

(Okuno, Hada and Shimodaira, arXiv:1802.04630)

Multi-view feature learning with many-to-many associations via neural networks for predicting new associations

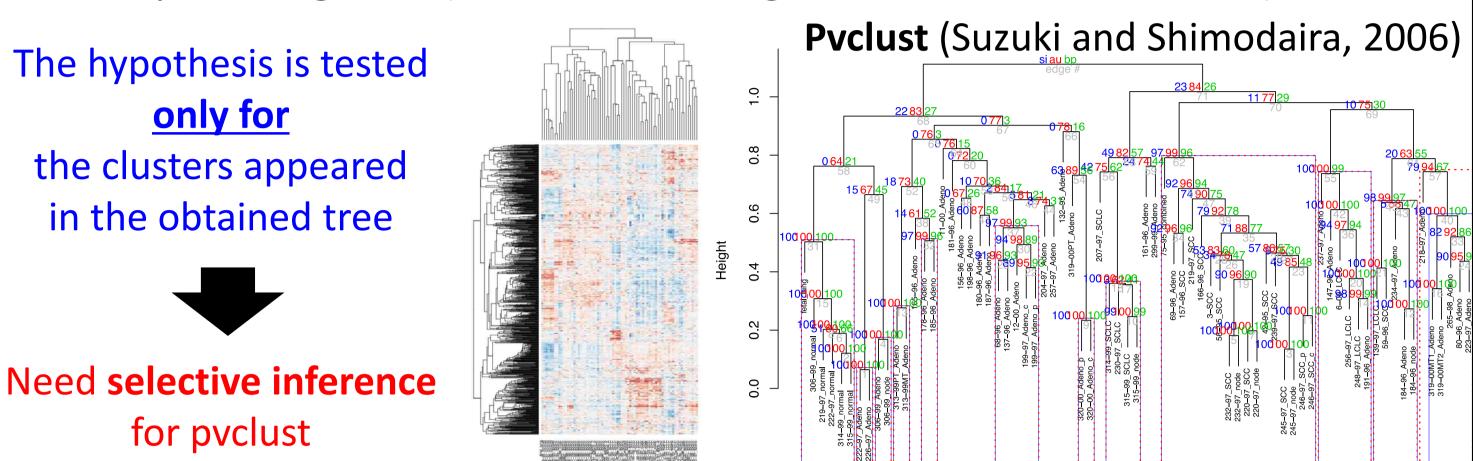


Advantages:

- PMvGE with neural networks is proved to be highly expressive.
- PMvGE approximately non-linearly generalizes CDMCA (Shimodaira 2016, Neural Networks) which already generalizes various existing methods such as CCA, LPP, and Spectral graph embedding.
- Likelihood-based estimation of neural networks is **efficiently** computed by mini-batch Stochastic Gradient Descent.

Selective inference (Terada and Shimodaira, arXiv:1711.00949)

- Motivation: Assessing the confidence of each obtained cluster
- Consider approx. unbiased p-values as frequentist confidence measures Null hypothesis = <u>obtained cluster</u> is NOT true
- Example: lung data (73 tumors, 916 genes; Garber et al., 2001)



Two asymptotic theories Selection region ↓ $V \upharpoonright S = \{(u,v) \mid v \geq -s(u)\}$ $H = \{(u, v) \mid v \le -h(u)\}$ ↑ Hypothesis region

Theorem (large sample theory):

Boundary surfaces of *H* and *S* are smooth and "nearly parallel",

⇒ The proposed p-value is second order accurate with error $O(n^{-1})$

Theorem (nearly flat surfaces):

Boundary surfaces are "nearly flat", approaching flat but allowing non-smooth such as cones and polyhedra

⇒ the proposed p-value is justified as unbiased with error $O(\lambda^2)$

Key point: Multiscale Bootstrap

(Shimodaira, 2002; 2004)

- ✓ Low computational cost : O(B)
- Double bootstrap method has same accuracy but high comp. cost $O(B^2)$

(1) Large sample theory with "nearly parallel surfaces"

 $h(u) = h_0 + h_i u_i + h_{ij} u_i u_j + h_{ijk} u_i u_j u_k + \cdots, \quad \eta \longrightarrow 0$

 $h_0 = O(1), \ h_i = O(n^{-1/2}), \ h_{ij} = O(n^{-1/2}), \ h_{ijk} = O(n^{-1}), \ldots$ Smooth surface (u,v) are $O(\sqrt{n})$, but $h_0 = O(n^{1/2})$, $h_i = O(1)$ are multiplied by $O(n^{-1/2})$ (2) Asymptotic theory of "nearly flat surfaces"

 $\sup_{u \in \mathbb{R}^m} |h(u)| = O(\lambda), \ \int_{\mathbb{R}^m} |h(u)| \, du < \infty, \ \int_{\mathbb{R}^m} |\mathcal{F}h(\omega)| \, d\omega < \infty$

(Shimodaira 2008)

1: Specify several $n' \in \mathbb{N}$ values, and set $\sigma^2 = n/n'$. Set the number of bootstrap replicates 2: For each n', perform bootstrap resampling to generate Y^* for B times and compute $\alpha_{\sigma^2}(H|y) = C_H/B$ and $\alpha_{\sigma^2}(S|y) = C_S/B$ by counting the frequencies $C_H = \#\{Y^* \in H\}$ and $C_S = \#\{Y^* \in S\}$. (We actually work on $\mathcal{X}_{n'}^*$ instead of Y^* .) Compute $\psi_{\sigma^2}(H|y) =$

Algorithm: Computing approx. unbiased selective p-values

 $\sigma \bar{\Phi}^{-1}(\alpha_{\sigma^2}(H|y))$ and $\psi_{\sigma^2}(S|y) = \sigma \bar{\Phi}^{-1}(\alpha_{\sigma^2}(S|y)).$ 3: Estimate parameters $\beta_H(y)$ and $\beta_S(y)$ by fitting models Model fitting to psi $|\psi_{\sigma^2}(H|y) = \varphi_H(\sigma^2|\beta_H) \text{ and } |\psi_{\sigma^2}(S|y) = \varphi_S(\sigma^2|\beta_S),$ respectively. The parameter estimates are denoted as $\hat{\beta}_H(y)$ and $\hat{\beta}_S(y)$. If we have several

candidate models, apply above to each and choose the best model based on AIC value. 4: Approximately unbiased p-values of selective inference (p_{SI}) and non-selective inference $(p_{\rm AU})$ are computed by one of (A) and (B) below. (A) Extrapolate $\psi_{\sigma^2}(H|y)$ and $\psi_{\sigma^2}(S|y)$ to $\sigma^2 = -1$ and 0, respectively, by Extrapolation $|z_H = \varphi_H(-1|\hat{\beta}_H(y))|$ and $|z_S = \varphi_S(0|\hat{\beta}_S(y)),$ and then compute p-values by **Selective** $p_{\mathrm{SI}}(H|S,y) = \frac{1}{\bar{\Phi}(z_H + z_S)} \alpha$ and $p_{\mathrm{AU}}(H|y) = \bar{\Phi}(z_H)$. *p*-value (B) Specify $k \in \mathbb{N}$, $\sigma_0^2, \sigma_{-1}^2 > 0$ (e.g., k = 3 and $\sigma_{-1}^2 = \sigma_0^2 = 1$). Extrapolate $\psi_{\sigma^2}(H|y)$

and $\psi_{\sigma^2}(S|y)$ to $\sigma^2 = -1$ and 0, respectively, by $z_{H,k} = \varphi_{H,k}(-1|\hat{\beta}_H(y), \sigma_{-1}^2)$ and $z_{S,k} = \varphi_{S,k}(0|\hat{\beta}_S(y), \sigma_0^2)$, where the Taylor polynomial approximation of φ_H at $\tau^2 > 0$ with k terms is: and that of φ_S is defined similarly. Then compute p-values by $p_{\mathrm{SI},k}(H|S,y) = \frac{\bar{\Phi}(z_{H,k})}{\bar{\Phi}(z_{H,k} + z_{S,k})}$ and $p_{\mathrm{AU},k}(H|y) = \bar{\Phi}(z_{H,k})$.

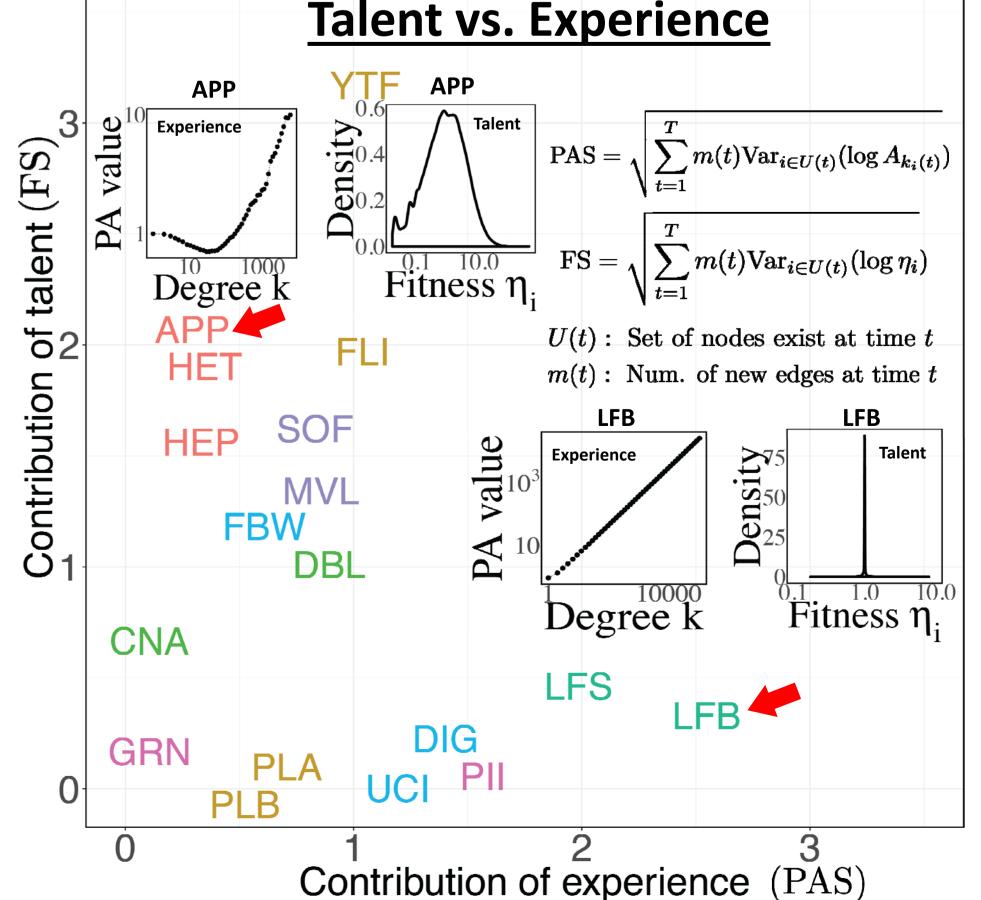
PAFit: an R Package for Estimating Preferential Attachment and **Node Fitness in Temporal Complex Networks**

(Pham, Sheridan and Shimodaira, arXiv:1704.06017)

- What drives the growth of real-world networks across diverse fields?
- Using two interpretable and universal mechanisms: (1) Talent: the intrinsic ability of a node to attract connections (fitness η_i) and (2) **Experience**: the preferential attachment (PA) function A_k governing the extent to which having more connections makes a node more/less attractive for forming new connections in the future.

Probability that node v_i gets a new edge at time $t = A_{k_i(t)} \eta_i$

Key finding: Although both talent and experience contribute to the growth process, the ratios of their contributions vary greatly.



- . Citation networks HEP: arXiv hep-ph papers HET: arXiv hep-th papers APP: APS journal papers 2. Social networks
- YTF: YouTube followship PLB: Prosper loan before Lehman PLA: Prosper loan after Lehman
- FLI: Flickr friendship 3. Co-author networks DBL: dblp authors
- **CNA:** complex network authors 4. Interaction networks LFS: last.fm song
- LFB: last.fm band 5. Communication networks UCI: UCIrvine forum message
- FBW: Facebook wall-post DIG: Digg message
- 6. Rating networks **SOF: Stackoverflow favourite MVL:** MovieLens rating
- 7. Biological networks **GRN:** Cancer gene
- PII: Human PPI