December 14, 2017 16:29


Talk by Dr. Pontus Stenetorp (University College London)

Machines that read and reason: Multi-hop reading comprehension across documents

While being one of the most active areas of research in Natural Language Processing, existing Reading Comprehension (RC) datasets — SQuAD, TriviaQA, etc. — are dominated by queries that can be answered based on the content of a single paragraph or document. However, enabling models to combine pieces of textual information from different sources would drastically extend the scope of RC – effectively allowing models to even answer queries whose answers are never explicitly stated. In this talk, we will introduce a novel Multi-hop RC task, 1 where a model has to learn how to find and combine disjoint pieces of textual evidence, effectively performing multi-step (alias multi-hop) inference. We present two datasets, WikiHop and MedHop, from different domains — both constructed using a unified methodology. We will then discuss the behaviour of several baseline models, including two established end-to-end RC models, BiDAF and FastQA. For example, one model is capable of integrating information across documents, but both models struggle to select relevant information. Overall the end-to-end models outperform multiple baselines, but their best accuracy is still far behind human performance, leaving ample room for improvements. It is our hope that these new datasets will drive future RC model development, leading to new and improved applications in areas such as Search, Question Answering, and scientific text mining.

More Information

Date December 19, 2017 (Tue) 17:00 - 18:30


Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan(Google Maps)