August 1, 2018 01:59

Abstract

Speaker: Keyulu Xu (Massachusetts Institute of Technology)

Title: Representation Learning on Graphs with Jumping Knowledge Networks

Abstract: Recent deep learning approaches for representation learning on graphs follow a neighborhood aggregation procedure. We analyze some important properties of these models, and propose a strategy to overcome those. In particular, the range of “neighboring” nodes that a node’s representation draws from strongly depends on the graph structure, analogous to the spread of a random walk. To adapt to local neighborhood properties and tasks, we explore an architecture — jumping knowledge (JK) networks — that flexibly leverages, for each node, different neighborhood ranges to enable better structure-aware representation. In a number of experiments on social, bioinformatics and citation networks, we demonstrate that our model achieves state-of-the-art performance. Furthermore, combining the JK framework with models like Graph Convolutional Networks, GraphSAGE and Graph Attention Networks consistently improves those models’ performance.

More Information

Date August 7, 2018 (Tue) 15:00 - 16:00
URL https://c5dc59ed978213830355fc8978.doorkeeper.jp/events/78278

Venue

〒103-0027 Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi,Chuo-ku, Tokyo(Google Maps)