ジャーナル論文 / Journal
- Sun, Y., Ochiai, H., and Sakuma, J., "Attacking Distance-aware Attack: Semi-targeted Model Poisoning on Federated Learning", IEEE Trans. Artif. Intell. 5(2), 925–939, (2024).
- NISHIYAMA, D., FUKUCHI, K., AKIMOTO, Y., and SAKUMA, J., "CAMRI Loss: Improving the Recall of a Specific Class without Sacrificing Accuracy", IEICE Trans. Inf. Syst. E106.D(4), 523–537, (2023).
- Miyagi, A., Miyauchi, Y., Maki, A., Fukuchi, K., Sakuma, J., and Akimoto, Y., "Covariance Matrix Adaptation Evolutionary Strategy with Worst-Case Ranking Approximation for Min–Max Optimization and Its Application to Berthing Control Tasks", ACM Transactions on Evolutionary Learning and Optimization 3(2), 1–32, (2023).
- Tsukada, T., and Unno, H., "Software model-checking as cyclic-proof search.", Proc. ACM Program. Lang. 6(POPL), 1–29, (2022).
- Sun, Y., and Ochiai, H., "Homogeneous Learning: Self-Attention Decentralized Deep Learning", IEEE Access 10, 7695–7703, (2022).
- Andrew, T. W., Koepke, L. S., Wang, Y., Lopez, M., Steininger, H., Struck, D., Boyko, T., Ambrosi, T. H., Tong, X., Sun, Y., Gulati, G. S., Murphy, M. P., Marecic, O., Telvin, R., Schallmoser, K., Strunk, D., Seita, J., Goodman, S. B., Yang, F., Longaker, M. T., Yang, G. P., and Chan, C. K., "Sexually dimorphic estrogen sensing in skeletal stem cells controls skeletal regeneration", Nat. Commun. 13(1), 6491, (2022).
- Sun, Y., Ochiai, H., and Esaki, H., "Decentralized Deep Learning for Multi-Access Edge Computing: A Survey on Communication Efficiency and Trustworthiness", IEEE Transactions on Artificial Intelligence 3(6), 963–972, (2021).
国際会議 / Proceedings
- Sun, Y., Ochiai, H., and Sakuma, J., "Instance-Level Trojan Attacks on Visual Question Answering via Adversarial Learning in Neuron Activation Space", 2024 International Joint Conference on Neural Networks, (2024).
- Pham, T., Shimizu, S., Hino, H., and Le, T., "Scalable counterfactual distribution estimation in multivariate causal models", Proceedings of the Third Conference on Causal Learning and Reasoning, PMLR 236, 1118–1140, (2024).
- Xu, K., Fukuchi, K., Akimoto, Y., and Sakuma, J., "Statistically Significant Concept-based Explanation of Image Classifiers via Model Knockoffs", Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, 519–526, (2023).
- Sun, Y., Ochiai, H., Wu, Z., Lin, S., and Kanai, R., "Associative Transformer is a Sparse Representation Learner", NeurIPS 2023 Associative Memory & Hopfield Networks workshop, (2023).
- Mori, J., Furukawa, R., Teranishi, I., and Sakuma, J., "Heterogeneous Domain Adaptation with Positive and Unlabeled Data", 2023 IEEE International Conference on Big Data (BigData) 00, 778–787, (2023).
- Sun, Y., Ochiai, H., and Sakuma, J., "Semi-Targeted Model Poisoning Attack on Federated Learning via Backward Error Analysis", 2022 International Joint Conference on Neural Networks (IJCNN) 00, 1–8, (2022).
- Sun, Y., Chong, N., and Ochiai, H., "Feature Distribution Matching for Federated Domain Generalization", Asian Conference on Machine Learning, (2022).
- Sato, R., Sakuma, J., and Akimoto, Y., "AdvantageNAS - Efficient Neural Architecture Search with Credit Assignment.", Aaai, 9489–9496, (2022).
- Unno, H., Terauchi, T., and Koskinen, E., "Constraint-Based Relational Verification.", Cav, 742–766, (2021).
- Tanabe, T., Fukuchi, K., Sakuma, J., and Akimoto, Y., "Level generation for angry birds with sequential VAE and latent variable evolution.", Gecco, 1052–1060, (2021).
- Morinaga, D., Fukuchi, K., Sakuma, J., and Akimoto, Y., "Convergence rate of the (1+1)-evolution strategy with success-based step-size adaptation on convex quadratic functions.", Gecco, 1169–1177, (2021).
- Miyagi, A., Fukuchi, K., Sakuma, J., and Akimoto, Y., "Adaptive scenario subset selection for min-max black-box continuous optimization.", Gecco, 697–705, (2021).
- Matsuura, T., Hasegawa, A. A., Akiyama, M., and Mori, T., "Careless Participants Are Essential for Our Phishing Study: Understanding the Impact of Screening Methods.", EuroUSEC, 36–47, (2021).
- Matsuura, T., Hasegawa, A. A., Akiyama, M., and Mori, T., "Careless Participants Are Essential for Our Phishing Study - Understanding the Impact of Screening Methods.", EuroUSEC, 36–47, (2021).
- Kura, S., Unno, H., and Hasuo, I., "Decision Tree Learning in CEGIS-Based Termination Analysis.", Cav, 75–98, (2021).
- Kobayashi, N., Sekiyama, T., Sato, I., and Unno, H., "Toward Neural-Network-Guided Program Synthesis and Verification.", Sas, 236–260, (2021).
- Kawaoka, R., Chiba, D., Watanabe, T., Akiyama, M., and Mori, T., "A First Look at COVID-19 Domain Names: Origin and Implications.", Pam, 39–53, (2021).
- Kakizaki, K., Miyagawa, T., Singh, I., and Sakuma, J., "Toward Practical Adversarial Attacks on Face Verification Systems.", Biosig, 113–124, (2021).
- Hasegawa, A. A., Yamashita, N., Akiyama, M., and Mori, T., "Why They Ignore English Emails: The Challenges of Non-Native Speakers in Identifying Phishing Emails.", SOUPS @ USENIX Security Symposium, 319–338, (2021).
- Akimoto, Y., "Saddle point optimization with approximate minimization oracle.", Gecco, 493–501, (2021).