ジャーナル論文 / Journal
- Okuno, A., and Sasaki, M., "A Systematic Approach to Decomposing Numerical Turbulence Fields into Substructures", Phys. Plasmas 32(3), 032502, (2025).
- Zheng, Y., Huang, B., Chen, W., Ramsey, J., Gong, M., Cai, R., Shimizu, S., Spirtes, P., and Zhang, K., "Causal-learn: Causal Discovery in Python", J. Mach. Learn. Res. 25, 1–7, (2024).
- Okuno, A., and Imaizumi, M., "Minimax Analysis for Inverse Risk in Nonparametric Planer Invertible Regression", Electron. J. Stat., (2024).
- Okuno, A., and Harada, K., "An interpretable neural network-based non-proportional odds model for ordinal regression", J. Comput. Graph. Stat. 33(4), 1454–1463, (2024).
- Okuno, A., Morishita, Y., and Mototake, Y., "Autoregressive with Slack Time Series Model for Forecasting a Partially-Observed Dynamical Time Series", Access 12, 24621–24630, (2024).
- Okuno, A., "Minimizing robust density power-based divergences for general parametric density models", Ann. Inst. Statist. Math. 76(5), 851–875, (2024).
- OKUNO, A., KODAHARA, T., and SASAKI, M., "Hierarchical Clustering of Modes in Numerical Turbulence Fields", Plasma and Fusion Research: Rapid Communications 19(0), 1201035, (2024).
- Maeda, T. N., and Shimizu, S., "Use of prior knowledge to discover causal additive models with unobserved variables and its application to time series data", Behaviormetrika, 1–19, (2024).
- Koyama, N., Sakai, Y., Sasaoka, S., Dominguez, D., Somiya, K., Omae, Y., Terada, Y., Meyer-Conde, M., and Takahashi, H., "Enhancing the rationale of convolutional neural networks for glitch classification in gravitational wave detectors: a visual explanation", Mach. Learn.: Sci. Technol. 5(3), 035028, (2024).
- Zhou, X., Zheng, X., Shu, T., Liang, W., Wang, K. I., Qi, L., Shimizu, S., and Jin, Q., "Information Theoretic Learning-Enhanced Dual-Generative Adversarial Networks With Causal Representation for Robust OOD Generalization", IEEE Trans. Neural Netw. Learn. Syst. PP(99), 1–14, (2023).
- Zhou, X., Zheng, X., Cui, X., Shi, J., Liang, W., Yan, Z., Yang, L. T., Shimizu, S., and Wang, K. I., "Digital Twin Enhanced Federated Reinforcement Learning With Lightweight Knowledge Distillation in Mobile Networks", IEEE J. Select. Areas Commun. 41(10), 3191–3211, (2023).
- Okuno, A., and Yano, K., "A Generalization Gap Estimation for Overparameterized Models via the Langevin Functional Variance", J. Comput. Graph. Stat. 32(4), 1287–1295, (2023).
- Guan, X., and Terada, Y., "Sparse kernel k-means for high-dimensional data", Pattern Recognit. 144, 109873, (2023).
- Zhou, X., Xu, X., Liang, W., Zeng, Z., Shimizu, S., Yang, L. T., and Jin, Q., "Intelligent Small Object Detection for Digital Twin in Smart Manufacturing With Industrial Cyber-Physical Systems.", IEEE Trans. Ind. Informatics 18(2), 1377–1386, (2022).
- Zhou, X., Liang, W., Li, W., Yan, K., Shimizu, S., and Wang, K. I., "Hierarchical Adversarial Attacks Against Graph-Neural-Network-Based IoT Network Intrusion Detection System.", IEEE Internet Things J. 9(12), 9310–9319, (2022).
- Suzuki, K., Abe, M. S., Kumakura , D., Nakaoka, S., Fujiwara , F., Miyamoto , H., Nakaguma , T., Okada , M., Sakurai , K., Shimizu , S., Iwata , H., Masuya, H., Nihei, N., and Ichihashi, Y., "Chemical-Mediated Microbial Interactions Can Reduce the Effectiveness of Time-Series-Based Inference of Ecological Interaction Networks", Int. J. Environ. Res. Public. Health 19(3), (2022).
- Maeda, T. N., and Shimizu, S., "Repetitive causal discovery of linear non-Gaussian acyclic models in the presence of latent confounders.", Int. J. Data Sci. Anal. 13(2), 77–89, (2022).
- Akamatsu, S., Terada, N., Takata, R., Kinoshita, H., Shimatani, K., Momozawa, Y., Yamamoto, M., Tada, H., Kawamorita, N., Narita, S., Kato, T., Nitta, M., Kandori, S., Koike, Y., Inazawa, J., Kimura, T., Kimura, H., Kojima, T., Terachi, T., Sugimoto, M., Habuchi, T., Arai, Y., Yamamoto, S., Matsuda, T., Obara, W., Kamoto, T., Inoue, T., Nakagawa, H., Ogawa, O., and group, o. b., "Clinical Utility of Germline Genetic Testing in Japanese Men Undergoing Prostate Biopsy", JNCI Cancer Spectrum 6(1), pkac001, (2022).
- Zeng, Y., Hao, Z., Cai, R., Xie, F., Huang, L., and Shimizu, S., "Nonlinear Causal Discovery for High-Dimensional Deterministic Data", IEEE Trans. Neural Netw. Learn. Syst., (2021).
- Maeda, T., and Shimizu, S., "Repetitive causal discovery of linear non-Gaussian acyclic models in the presence of latent confounders", International Journal of Data Science and Analytics, (2021).
国際会議 / Proceedings
- Yokoi, S., Bao, H., Kurita, H., and Shimodaira, H., "Zipfian Whitening", 38th Conference on Neural Information Processing Systems (NeurIPS 2024), (2024).
- Takahashi, D., Shimizu, S., and Tanaka, T., "Counterfactual Explanations of Black-box Machine Learning Models using Causal Discovery with Applications to Credit Rating", 2024 International Joint Conference on Neural Networks (IJCNN) 00, 1–8, (2024).
- Pham, T., Shimizu, S., Hino, H., and Le, T., "Scalable counterfactual distribution estimation in multivariate causal models", Proceedings of the Third Conference on Causal Learning and Reasoning, PMLR 236, 1118–1140, (2024).
- Ishibashi, Y., Yokoi, S., Sudoh, K., and Nakamura, S., "Subspace Representations for Soft Set Operations and Sentence Similarities", Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), 3512–3524, (2024).
- Inoshita, K., Zhou, X., and Shimizu, S., "Multi-Domain and Multi-View Oriented Deep Neural Network for Sentiment Analysis in Large Language Models", 2024 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics 00, 149–156, (2024).
- Wani, S., Zhou, X., and Shimizu, S., "BiLSTM and VAE Enhanced Multi-Task Neural Network for Trust-Aware E-Commerce Product Analysis", 2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom) 00, 780–787, (2023).
- Tsuchiya, T., Ito, S., and Honda, J., "Stability-penalty-adaptive follow-the-regularized-leader: Sparsity, game-dependency, and best-of-both-worlds", Advances in Neural Information Processing Systems 36, 47406–47437, (2023).
- Tsuchiya, T., Ito, S., and Honda, J., "Further Adaptive Best-of-Both-Worlds Algorithm for Combinatorial Semi-Bandits", Proceedings of the 26th International Conference on Artificial Intelligence and Statistics (AISTATS2023), Proceedings of Machine Learning Research 206, 8117–8144, (2023).
- Lee, J., Honda, J., Chiang, C. K., and Sugiyama, M., "Optimality of Thompson sampling with noninformative priors for Pareto bandits", Proceedings of 40th International Conference on Machine Learning (ICML2023), Proceedings of Machine Learning Research 202, 18810–18851, (2023).
- Kurita, H., Kobayashi, G., Yokoi, S., and Inui, K., "Contrastive Learning-based Sentence Encoders Implicitly Weight Informative Words", In Findings of the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP2023 Findings), (2023).
- Kobayashi, G., Kuribayashi, T., Yokoi, S., and Inui, K., "Transformer Language Models Handle Word Frequency in Prediction Head", In Findings of the 61st Annual Meeting of the Association for Computational Linguistics (ACL2023 Findings), 4523–4535, (2023).
- Kikuchi, G., and Shimizu, S., "Structure Learning for Groups of Variables in Nonlinear Time-Series Data with Location-Scale Noise", Proceedings of the 2023 Causal Analysis Workshop Series, PMLR 223, 20–39, (2023).
- Jiang, Y., and Shimizu, S., "Linkages among the Foreign Exchange, Stock, and Bond Markets in Japan and the United States", Proceedings of the 2023 Causal Analysis Workshop Series, PMLR 223, 1–19, (2023).
- Arase, Y., Bao, H., and Yokoi, S., "Unbalanced Optimal Transport for Unbalanced Word Alignment", Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (ACL2023) 1, 3966–3986, (2023).
- Zeng, Y., Shimizu, S., Matsui, H., and Sun, F., "Causal Discovery for Linear Mixed Data.", CLeaR, 994–1009, (2022).
- Uemura, K., Takagi, T., Takayuki, K., Yoshida, H., and Shimizu, S., "A Multivariate Causal Discovery based on Post-Nonlinear Model.", Proceedings of the First Conference on Causal Learning and Reasoning, PMLR 177, 826–839, (2022).
- Zeng, Y., Shimizu, S., Cai, R., Xie, F., Yamamoto, M., and Hao, Z., "Causal Discovery with Multi-Domain LiNGAM for Latent Factors", Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21), (2021).
- Maeda, T., and Shimizu, S., "Causal Additive Models with Unobserved Variables", Proceedings of Machine Learning Research, (2021).
- Kiritosh, K., Izumitani, T., Koyama, K., Okawachi, T., Asahara, K., and Shimizu, S., "Estimating individual-level optimal causal interventions combining causal models and machine learning models", Proceedings of The KDD'21 Workshop on Causal Discovery, (2021).
レビュー / Review
- 田栗正隆, 高橋邦彦, 小向翔, 伊藤ゆり, 服部聡, 船渡川伊久子, 篠崎智大, 山本倫生, 林賢一, "疫学分野での計量生物学の発展", 計量生物学 44(2), 129–200, (2024).
- Kuroki, Y., Honda, J., and Sugiyama, M., "Combinatorial pure exploration with full-bandit feedback and beyond: Solving combinatorial optimization under uncertainty with limited observation", The Fields Institute Communications Series on Data Science and Optimization, (2023).