ジャーナル論文 / Journal
- Zhou, Y., Yang, P., Qu, Y., Xu, X., Zhe, S., and Cichocki, A., "AnoOnly: Semi-supervised anomaly detection with the only loss on anomalies", Expert Syst. Appl., 125597, (2024).
- Zhao, X., Xu, R., Xu, R., Wang, X., Cichocki, A., and Jin, J., "An auto-segmented multi-time window dual-scale neural network for brain-computer interfaces based on event-related potentials", J. Neural Eng. 21(4), 046008, (2024).
- Zhang, D., Huang, H., Zhao, Q., and Zhou, G., "Generalized latent multi-view clustering with tensorized bipartite graph", Neural Netw. 175, 106282, (2024).
- Zeng, J., Qiu, Y., Ma, Y., Wang, A., and Zhao, Q., "A Novel Tensor Ring Sparsity Measurement for Image Completion", Entropy 26(2), 105, (2024).
- Xiao, C., Huang, Y., Huang, H., Zhao, Q., and Zhou, G., "Consistency and Diversity Induced Tensorized Multi-View Subspace Clustering", IEE Trans. Emerg. Topics Comput. Intell. PP(99), 1–12, (2024).
- Xia, Y., Liu, Q., Wang, J., and Cichocki, A., "A Survey of Neurodynamic Optimization", IEE Trans. Emerg. Topics Comput. Intell. 8(4), 2677–2696, (2024).
- Tao, Z., Tanaka, T., and Zhao, Q., "Nonparametric tensor ring decomposition with scalable amortized inference", Neural Netw. 169, 431–441, (2024).
- Tang, J., Yang, Y., Zhao, Q., Ding, Y., Zhang, J., Song, Y., and Kong, W., "Visual guided Dual-spatial Interaction Network for Fine-grained Brain Semantic Decoding", IEEE Trans. Instrum. Meas. PP(99), 1–1, (2024).
- Miao, Y., Suzuki, H., Sugano, H., Ueda, T., Iimura, Y., Matsui, R., and Tanaka, T., "Causal Connectivity Network Analysis of Ictal Electrocorticogram With Temporal Lobe Epilepsy Based on Dynamic Phase Transfer Entropy", IEEE Trans. Biomed. Eng. 71(2), 531–541, (2024).
- Li, S., Xu, X., Jiang, X., Shen, F., Sun, Z., and Cichocki, A., "Cross-Modal Attention Preservation with Self-Contrastive Learning for Composed Query-Based Image Retrieval", ACM Trans. Multimedia Comput. Commun. Appl., (2024).
- Li, S., Daly, I., Guan, C., Cichocki, A., and Jin, J., "Inter-participant transfer learning with attention based domain adversarial training for P300 detection", Neural Netw. 180, 106655, (2024).
- Li, D., Cheng, B., Shi, L., Xiang, S., and Zhao, Q., "An automated measurement method for the fatigue crack propagation based on decorrelated digital image correlation", Int. J. Fatigue 183, 108265, (2024).
- Jin, J., Xu, R., Daly, I., Zhao, X., Wang, X., and Cichocki, A., "MOCNN: A Multiscale Deep Convolutional Neural Network for ERP-Based Brain-Computer Interfaces", IEEE Trans. Cybern. 54(9), 5565–5576, (2024).
- Jin, J., Chen, W., Xu, R., Liang, W., Wu, X., He, X., Wang, X., and Cichocki, A., "Multiscale Spatial-Temporal Feature Fusion Neural Network for Motor Imagery Brain-Computer Interfaces", IEEE J. Biomed. Health Inform. PP(99), 1–12, (2024).
- He, X., Allison, B. Z., Qin, K., Liang, W., Wang, X., Cichocki, A., and Jin, J., "Leveraging Transfer Superposition Theory for Stable-State Visual Evoked Potential Cross-Subject Frequency Recognition", IEEE Trans. Biomed. Eng. 71(11), 3071–3084, (2024).
- Han, S., Sun, Z., Zhao, K., Duan, F., Caiafa, C. F., Zhang, Y., and Solé-Casals, J., "Early prediction of dementia using fMRI data with a graph convolutional network approach", J. Neural Eng. 21(1), 016013, (2024).
- Cao, W., Chen, X., Yan, S., Zhou, Z., and Cichocki, A., "1-Bit Tensor Completion via Max-and-Nuclear-Norm Composite Optimization", IEEE Trans. Signal Processing 72, 3487–3501, (2024).
- Bai, M., Zhou, D., and Zhao, Q., "TendiffPure: convolutional tensor-train denoising diffusion model for purification", Fronties of Information Technology and Electronic Engineering, (2024).
- Zhou, Z., Wan, Y., Cui, Q., Yu, K., Mumtaz, S., Yang, C., and Guizani, M., "Blockchain-Based Secure and Efficient Secret Image Sharing With Outsourcing Computation in Wireless Networks", IEEE Trans. Wireless Commun. 23(1), 423–435, (2023).
- Zhang, R., Sui, L., Gong, J., and Cao, J., "EEG-based real-time diagnostic system with developed dynamic 2TEMD and dynamic ApEn algorithms", Front. Physiol. 14, 1165450, (2023).
- Zhang, J., Yan, Q., Zhu, X., and Yu, K., "Smart industrial IoT empowered crowd sensing for safety monitoring in coal mine", Digital Communications and Networks 9(2), 296–305, (2023).
- Zeng, J., Zhou, G., Qiu, Y., Ma, Y., and Zhao, Q., "Hyperspectral and Multispectral Image Fusion via Bayesian Nonlocal CP Factorization", IEEE Geosci. Remote. S. 21, 1–5, (2023).
- Zeng, J., Zhou, G., Qiu, Y., Ma, Y., and Zhao, Q., "Hyperspectral and Multispectral Image Fusion via Bayesian Nonlocal CP Factorization", Hyperspectral and Multispectral Image Fusion via Bayesian Nonlocal CP Factorization, (2023).
- Yu, Y., Bezerianos, A., Cichocki, A., and Li, J., "Latent Space Coding Capsule Network for Mental Workload Classification", IEEE Trans. Neural Syst. Rehab. Eng. 31, 3417–3427, (2023).
- Ye, C., Li, C., Li, Y., Sun, Y., Yang, W., Bai, M., Zhu, X., Hu, J., Chi, T., Zhu, H., and He, L., "Differential evolution with alternation between steady monopoly and transient competition of mutation strategies", Swarm Evol. Comput. 83, 101403, (2023).
- Wu, R., Jin, J., Daly, I., Wang, X., and Cichocki, A., "Classification of Motor Imagery Based on Multi-Scale Feature Extraction and the Channel-Temporal Attention Module", IEEE Trans. Neural Syst. Rehab. Eng. 31, 3075–3085, (2023).
- Wang, J., Qu, A., Wang, Q., Zhao, Q., Liu, J., and Wu, Q., "TT-Net: Tensorized Transformer Network for 3D medical image segmentation", Comput. Med. Imaging Graph. 107, 102234, (2023).
- Wang, H., Peng, J., Cao, X., Wang, J., Zhao, Q., and Meng, D., "Hyperspectral Image Denoising via Nonlocal Spectral Sparse Subspace Representation", IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. PP(99), 1–15, (2023).
- Wang, A., Zhou, G., Jin, Z., and Zhao, Q., "Noisy tensor completion via orientation invariant tubal nuclear norm", Pacific Journal of Optimization, (2023).
- Tang, J., Hou, M., Jin, X., Zhang, J., Zhao, Q., and Kong, W., "Tree-Based Mix-Order Polynomial Fusion Network for Multimodal Sentiment Analysis", Systems 11(1), 44, (2023).
- Takayama, H., and Yokota, T., "A New Model for Tensor Completion: Smooth Convolutional Tensor Factorization", IEEE Access 11, 67526–67539, (2023).
- Sun, H., Jin, J., Daly, I., Huang, Y., Zhao, X., Wang, X., and Cichocki, A., "Feature learning framework based on EEG graph self-attention networks for motor imagery BCI systems", J. Neurosci. Methods 399, 109969, (2023).
- Shi, L., Cheng, B., Li, D., Xiang, S., Liu, T., and Zhao, Q., "A CNN-based lamb wave processing model for field monitoring of fatigue cracks in orthotropic steel bridge decks", Structures 57, 105146, (2023).
- Shan, S., Ding, Z., Zhang, K., Wei, H., Li, C., and Zhao, Q., "ACGL-TR: A deep learning model for spatio-temporal short-term irradiance forecast", Energy Convers. Manage. 284, 116970, (2023).
- Qiu, H., Li, C., Weng, Y., Sun, Z., and Zhao, Q., "Fractional Tensor Recurrent Unit (fTRU): A Stable Forecasting Model With Long Memory", IEEE Trans. Neural Netw. Learn. Syst. PP(99), 1–10, (2023).
- Peng, Y., Wang, C., Hao, Y., Zhen, L., Chen, G., Kumar, N., and Yu, K., "High-Precision Surface Crack Detection for Rolling Steel Production Equipment in ICPS", IEEE Internet Things J. 11(3), 4586–4599, (2023).
- Müller-Putz, G. R., Collinger, J. L., and Kobler, R. J., "Editorial: Towards dependable brain computer/machine interfaces for movement control", Front. Hum. Neurosci. 17, 1186423, (2023).
- Liu, L., Tian, Y., Chakraborty, C., Feng, J., Pei, Q., Zhen, L., and Yu, K., "Multilevel Federated Learning-Based Intelligent Traffic Flow Forecasting for Transportation Network Management", IEEE Trans. Netw. Service Manag. 20(2), 1446–1458, (2023).
- Li, Y., Bai, M., Guan, Q., Ming, Z., Liang, X., Liu, G., and Gao, J., "CSD-RkNN: reverse k nearest neighbors queries with conic section discriminances", International Journal of Geographical Information Science 37(10), 2175–2204, (2023).
- Jin, X., Li, N., Kong, W., Zhao, Q., Tang, J., Zhu, L., and Cao, J., "Disentangled Adversarial Generalization Network for cross-session Task-independent Brainprint Recognition", IEEE Trans. Cogn. Develop. Syst. PP(99), 1–12, (2023).
- Huang, H., Zhou, G., Zheng, Y., Yang, Z., and Zhao, Q., "Exclusivity and consistency induced NMF for multi-view representation learning", Knowledge-Based Systems 281, 111020, (2023).
- Huang, H., Zhou, G., Zhao, Q., He, L., and Xie, S., "Comprehensive Multiview Representation Learning via Deep Autoencoder-Like Nonnegative Matrix Factorization", IEEE Trans. Neural Netw. Learn. Syst., (2023).
- Huang, H., Zhou, G., Liang, N., Zhao, Q., and Xie, S., "Diverse Deep Matrix Factorization with Hypergraph Regularization for Multi-View Data Representation", Ieee-caa Journal of Automatica Sinica 10(11), 2154–2167, (2023).
- He, P., Lan, C., Bashir, A. K., Wu, D., Wang, R., Kharel, R., and Yu, K., "Low-Latency Federated Learning via Dynamic Model Partitioning for Healthcare IoT", IEEE J. Biomed. Health Inform. 27(10), 4684–4695, (2023).
- Du, N., Zhou, C., Shen, H., Chakraborty, C., Yang, J., and Yu, K., "A Novel Power Allocation Algorithm for Minimizing Energy Consumption in D2D Communication Systems", IEEE Syst. J. 17(3), 4969–4977, (2023).
- Chen, J., Wang, W., Fang, B., Liu, Y., Yu, K., Leung, V. C., and Hu, X., "Digital Twin Empowered Wireless Healthcare Monitoring for Smart Home", IEEE J. Select. Areas Commun. 41(11), 3662–3676, (2023).
- Zheng, Y., Huang, T., Zhao, X., and Zhao, Q., "Tensor Completion via Fully-Connected Tensor Network Decomposition with Regularized Factors", J. Sci. Comput. 92(8), 1–35, (2022).
- Zheng, W., Zhao, X., Zheng, Y., and Pang, Z., "Nonlocal Patch-Based Fully Connected Tensor Network Decomposition for Multispectral Image Inpainting", IEEE Geosci. Remote. S. 19, (2022).
- Zhao, X., Yu, Y., Zhou, G., Zhao, Q., and Sun, W., "Fast hypergraph regularized nonnegative tensor ring decomposition based on low-rank approximation", Applied Intelligence, (2022).
- Zhang, D., Luo, Y., Yu, Y., Zhao, Q., and Zhou, G., "Semi-supervised multi-view clustering with dual hypergraph regularized partially shared non-negative matrix factorization", Science China Technological Sciences 65(6), 1349–1365, (2022).
- ZHAO, X., ZHAO, Q., Tanaka, T., Sole-Casals, J., Zhou, G., Mitsuhashi, T., Sugano, H., Yoshida, N., and Cao, J., "Classification of the Epileptic Seizure Onset Zone Based on Partial Annotation", Cognitive Neurodynamics, (2022).
- Yu, Y., Zhou, G., Zheng, N., Qiu, Y., Xie, S., and Zhao, Q., "Graph-Regularized Non-Negative Tensor-Ring Decomposition for Multiway Representation Learning", IEEE Trans. Cybern. PP(99), 1–14, (2022).
- Yu, Y., Zhou, G., Huang, H., Xie, S., and Zhao, Q., "A semi-supervised label-driven auto-weighted strategy for multi-view data classification.", Knowl. Based Syst. 255, 109694, (2022).
- Yokota, T., Hontani, H., Zhao, Q., and Cichocki, A., "Manifold Modeling in Embedded Space: An Interpretable Alternative to Deep Image Prior", IEEE Trans. Neural Netw. Learn. Syst. 33(3), 1022–1036, (2022).
- Yokota, T., Hontani, H., Zhao, Q., and Cichocki, A., "Manifold Modeling in Embedded Space - An Interpretable Alternative to Deep Image Prior.", IEEE Trans. Neural Networks Learn. Syst. 33(3), 1022–1036, (2022).
- Wang, A., Zhao, Q., Jin, Z., Li, C., and Zhou, G., "Robust tensor decomposition via orientation invariant tubal nuclear norms", SCIENCE CHINA Technological Sciences, (2022).
- Tang, J., Liu, D., Jin, X., Peng, Y., Zhao, Q., Ding, Y., and Kong, W., "BAFN: Bi-direction Attention based Fusion Network for Multimodal Sentiment Analysis", IEEE Trans. Circuits Syst. Video Technol. PP(99), 1–1, (2022).
- Takayama, H., Zhao, Q., Hontani, H., and Yokota, T., "Bayesian Tensor Completion and Decomposition with Automatic CP Rank Determination Using MGP Shrinkage Prior.", SN Comput. Sci. 3(3), 225, (2022).
- Takahashi, K., Sun, Z., Solé-Casals, J., Cichocki, A., Phan, A. H., Zhao, Q., Zhao, H., Deng, S., and Micheletto, R., "Data augmentation for Convolutional LSTM based brain computer interface system.", Appl. Soft Comput. 122, 108811, (2022).
- Qiu, Y., Zhou, G., Zhao, Q., and Xie, S., "Noisy Tensor Completion via Low-Rank Tensor Ring", IEEE Trans. Neural Netw. Learn. Syst. PP(99), 1–15, (2022).
- Qiu, Y., Zhou, G., Zeng, J., Zhao, Q., and Xie, S., "Imbalanced low-rank tensor completion via latent matrix factorization", Neural Netw. 155, 369–382, (2022).
- Qiu, Y., Zhou, G., Huang, Z., Zhao, Q., and Xie, S., "Efficient Tensor Robust PCA Under Hybrid Model of Tucker and Tensor Train.", IEEE Signal Process. Lett. 29, 627–631, (2022).
- Miao, Y., Zhao, X., Fu, X., Wang, J., and Zheng, Y., "Hyperspectral Denoising Using Unsupervised Disentangled Spatiospectral Deep Priors", IEEE Trans. Geosci. Remote Sensing 60, (2022).
- Luo, Y., Zhao, X., Jiang, T., Chang, Y., Ng, M. K., and Li, C., "Self-Supervised Nonlinear Transform-Based Tensor Nuclear Norm for Multi-Dimensional Image Recovery", IEEE Trans. Image Processing 31, 3793–3808, (2022).
- Luo, Y., Wang, A., Zhou, G., and Zhao, Q., "A Hybrid Norm for Guaranteed Tensor Recovery", Front. Phys. 10, (2022).
- Liu, S., Zhang, J., Wang, A., Wu, H., Zhao, Q., and Long, J., "Subject adaptation convolutional neural network for EEG-based motor imagery classification", J. Neural Eng. 19(6), 066003, (2022).
- Li, T., Zhou, G., Qiu, Y., and Zhao, Q., "Toward Understanding Convolutional Neural Networks from Volterra Convolution Perspective", J. Mach. Learn. Res., (2022).
- Huang, H., Zhou, G., Liang, N., Zhao, Q., and Xie, S., "Diverse deep matrix factorization with hypergraph regularization for multiview data representation", IEEE/CAA J. Autom. Sinica PP(99), 1–14, (2022).
- He, W., Yao, Q., Li, C., Yokoya, N., Zhao, Q., Zhang, H., and Zhang, L., "Non-Local Meets Global - An Iterative Paradigm for Hyperspectral Image Restoration.", IEEE Trans. Pattern Anal. Mach. Intell. 44(4), 2089–2107, (2022).
- He, W., Chen, Y., Yokoya, N., Li, C., and Zhao, Q., "Hyperspectral super-resolution via coupled tensor ring factorization.", Pattern Recognit. 122, 108280, (2022).
- Chen, X., Zhou, G., Wang, Y., Hou, M., Zhao, Q., and Xie, S., "Accommodating Multiple Tasks' Disparities With Distributed Knowledge-Sharing Mechanism.", IEEE Trans. Cybern. 52(4), 2440–2452, (2022).
- Yu, J., Zhou, G., Li, C., Zhao, Q., and Xie, S., "Low Tensor-Ring Rank Completion by Parallel Matrix Factorization.", IEEE Trans. Neural Networks Learn. Syst. 32(7), 3020–3033, (2021).
- Wang, A., Zhou, G., and Zhao , Q., "Guaranteed Robust Tensor Completion via ∗L-SVD with Applications to Remote Sensing Data", Remote Sensing 13(18), 3671–3671, (2021).
- Wang, A., Zhou, G., Jin, Z., and Zhao, Q., "Tensor Recovery via $*_L$-Spectral k-Support Norm", IEEE J. Sel. Topics Signal Process. 15(3), 522–534, (2021).
- Sui, L., Zhao, X., Zhao, Q., Tanaka, T., and Cao, J., "Hybrid Convolutional Neural Network for Localization of Epileptic Focus Based on iEEG", Neural Plast. 2021, (2021).
- Li, B., Zhang, Z., Duan, F., Yang, Z., Zhao, Q., Sun, Z., and Sole-Casals, J., "Component-mixing strategy: A decomposition-based data augmentation algorithm for motor imagery signals", Neurocomputing 465, 325–335, (2021).
- Chen, Z., Zhou, G., and Zhao, Q., "Hierarchical Factorization Strategy for High-Order Tensor and Application to Data Completion.", IEEE Signal Process. Lett. 28, 1255–1259, (2021).
国際会議 / Proceedings
- Wang, P., Shen, L., Tao, Z., He, S., and Tao, D., "Generalization Analysis of Stochastic Weight Averaging with General Sampling", Icml, (2024).
- Wang, A., QIU, Y., Bai, M., Jin, Z., Zhou, G., and Zhao, Q., "Generalized Tensor Decomposition for Understanding Multi-Output Regression under Combinatorial Shifts", Thirty-eighth Conference on Neural Information Processing Systems, (2024).
- Tao, Z., Tanaka, T., and Zhao, Q., "Efficient Nonparametric Tensor Decomposition for Binary and Count Data", The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24), (2024).
- Qiu, Y., Zhou, G., Wang, A., Huang, Z., and Zhao, Q., "Towards Multi-modes Outlier Robust Tensor Ring Decomposition", The 38th Annual AAAI Conference on Artificial Intelligence, (2024).
- Lin, G., Li, C., Zhang, J., Tanaka, T., and Zhao, Q., "Adversarial Training on Purification (AToP): Advancing Both Robustness and Generalization", The Twelfth International Conference on Learning Representations (ICLR 2024), (2024).
- Huang, H., Zhou, G., Zheng, Y., Qiu, Y., Wang, A., and Zhao, Q., "Adversarially Robust Deep Multi-View Clustering: A Novel Attack and Defense Framework", Icml, (2024).
- Bai, M., Huang, W., Li, T., Wang, A., Gao, J., Caiafa, C. F., and Zhao, Q., "Diffusion Models Demand Contrastive Guidance for Adversarial Purification to Advance", Forty-first International Conference on Machine Learning 235, 2375–2391, (2024).
- Zhang, J., Yan, H., and Zhao, Q., "Memorization Weights for Instance Reweighting in Adversarial Training", the 37th Aaai Conference On Artificial Intelligence (aaai-2023), (2023).
- Wang, A., Li, C., Bai, M., Jin, Z., Zhou, G., and Zhao, Q., "Transformed Low-Rank Parameterization Can Help Robust Generalization for Tensor Neural Networks", Thirty-seventh Conference on Neural Information Processing Systems, (2023).
- Tao, Z., Tanaka, T., and Zhao, Q., "Undirected Probabilistic Model for Tensor Decomposition", The Thirty-seventh Annual Conference on Neural Information Processing Systems (NeurIPS 2023), (2023).
- Tao, Z., Tanaka, T., and Zhao, Q., "Scalable Bayesian Tensor Ring Factorization for Multiway Data Analysis", The 2023 International Conference on Neural Information Processing (ICONIP2023), (2023).
- Mo, S., Sun, Z., and Li, C., "Representation Disentanglement in Generative Models with Contrastive Learning", Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, (2023).
- Mo, S., Sun, Z., and Li, C., "Multi-level contrastive learning for self-supervised vision transformers", Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Visio, (2023).
- Lin, Z., Huang, H., Yu, Y., Zhou, G., and Zhao, Q., "Consistent Anchor Induced Multi-View Deep Matrix Factorization", 2023 42nd Chinese Control Conference (CCC) 00, 7633–7637, (2023).
- Li, C., Zeng, J., Li, C., Caiafa, C., and Zhao, Q., "Alternating local enumeration (TnALE): Solving tensor network structure search with fewer evaluations", Proceedings of the 40th International Conference on Machine Learning (ICML), (2023).
- Ju, Y., Gao, Z., Liu, L., Pei, Q., Yu, K., and Rodrigues, J. J., "Secure mmWave Vehicular Communications with DRL-Based Joint Relay and Jammer Selection", ICC 2023 - IEEE International Conference on Communications 00, 5221–5226, (2023).
- Ju, C., Kobler, R. J., and Guan, C., "Score-Based Data Generation for EEG Spatial Covariance Matrices: Towards Boosting BCI Performance", 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) 00, 1–7, (2023).
- Zhao, X., Sole-Casals, J., Zhao, Q., Cao, J., and Tanaka, T., "Multi-feature Fusion for Epileptic Focus Localization Based on Tensor Representation", Proceeding of 2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), (2022).
- ZHAO, X., Takata, S., Fukumori, K., and Tanaka, T., "Infant Posture Assessment Based on Rotational Keypoint Detection", Proceeding of 2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), (2022).
- Yamamoto, R., Hontani, H., Imakura, A., and Yokota, T., "Fast Algorithm for Low-rank Tensor Completion in Delay-embedded Space", 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 00, 2048–2056, (2022).
- Yamamoto, R., Hontani, H., Imakura, A., and Yokota, T., "Consistent MDT-Tucker: A Hankel Structure Constrained Tucker Decomposition in Delay Embedded Space", 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) 00, 137–142, (2022).
- Tang, J., Li, K., Hou, M., Jin, X., Kong, W., Ding, Y., and Zhao, Q., "MMT: Multi-way Multi-modal Transformer for Multimodal Learning", Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, 3458–3465, (2022).
- Takayama, H., and Yokota, T., "Fast Signal Completion Algorithm with Cyclic Convolutional Smoothing", 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) 00, 364–371, (2022).
- Mo, S., Sun, Z., and Li, C., "Rethinking Prototypical Contrastive Learning through Alignment, Uniformity and Correlation", The 33rd British Machine Vision Conference Proceedings, (2022).
- Li, Y., Sun, Z., and Li, C., "Are we pruning the correct channels in image-to-image translation models?", The 33rd British Machine Vision Conference Proceedings, (2022).
- Li, C., Zeng, J., Tao, Z., and Zhao, Q., "Permutation Search of Tensor Network Structures via Local Sampling.", Icml, 13106–13124, (2022).
- Konstantinidis, K., Xu, Y. L., Zhao, Q., and Mandic, D. P., "Variational Bayesian Tensor Networks with Structured Posteriors", ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 00, 3638–3642, (2022).
- Kobler, R., Hirayama, J., Zhao, Q., and Kawanabe, M., "Spd domain-specific batch normalization to crack interpretable unsupervised domain adaptation in eeg", 36th Conference on Neural Information Processing Systems (NeurIPS 2022), (2022).
- Huang, H., Luo, Y., Zhou, G., and Zhao, Q., "Multi-View Data Representation Via Deep Autoencoder-Like Nonnegative Matrix Factorization", ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 00, 3338–3342, (2022).
- Bai, M., Chen, J., Zhao, Q., Li, C., Zhang, J., and Gao, J., "Tensor Neural Controlled Differential Equations", 2022 International Joint Conference on Neural Networks (IJCNN) 00, 1–9, (2022).
- Zhang, J., Tao, Z., Zhang, L., and Zhao, Q., "Tensor Decomposition Via Core Tensor Networks.", Icassp, 2130–2134, (2021).
- Tao, Z., Zhao, X., Tanaka, T., and Zhao, Q., "Bayesian Latent Factor Model for Higher-order Data", Proceedings of The 13th Asian Conference on Machine Learning 157, 1285–1300, (2021).
- Tang, J., Li, K., Jin, X., Cichocki, A., Zhao, Q., and Kong, W., "CTFN - Hierarchical Learning for Multimodal Sentiment Analysis Using Coupled-Translation Fusion Network.", Acl/ijcnlp, 5301–5311, (2021).
- Qiu, H., Li, C., Weng, Y., Sun, Z., He, X., and Zhao, Q., "On the Memory Mechanism of Tensor-Power Recurrent Models.", Aistats, 3682–3690, (2021).
- Huang, Z., Li, C., Duan, F., and Zhao, Q., "Multi-distorted Image Restoration with Tensor 1 × 1 Convolutional Layer.", Ijcnn, 1–8, (2021).
- Caiafa, C. F., Wang, Z., Solé-Casals, J., and Zhao, Q., "Learning From Incomplete Features by Simultaneous Training of Neural Networks and Sparse Coding.", CVPR Workshops, 2621–2630, (2021).
- Bai, M., Zhao, Q., and Gao, J., "Tensorial Time Series Prediction via Tensor Neural Ordinary Differential Equations.", Ijcnn, 1–8, (2021).
エディトリアル / Editorial
- Zhou, T., Zhang, Y., Thung, K., Adeli, E., Rekik, I., Zhao, Q., and Zhang, C., "Multi-view representation learning and understanding", Multimedia Tools and Applications 80(15), 22865–22865, (2021).
- Zhao, Q., Zhou, G., Zhang, Y., Caiafa, C. F., and Cao, J., "Special Topic: Tensor Methods in Machine Learning Preface", Science China-technological Sciences, (2021).