ジャーナル論文 / Journal
- Tučs, A., Ito, T., Kurumida, Y., Kawada, S., Nakazawa, H., Saito, Y., Umetsu, M., and Tsuda, K., "Extensive antibody search with whole spectrum black-box optimization", Sci. Rep. 14(1), 552, (2024).
- Sumita, M., Takahashi, H., Sugita, T., and Tsuda, K., "Theoretical Insight into the Origin of Dielectric and Magnetoelectric FeCo Alloy–Metal Fluoride Insulators", The Journal of Physical Chemistry C 128(3), 1386–1392, (2024).
- Suleiman, M., Frere, G. A., Törner, R., Tabunar, L., Bhole, G. V., Taverner, K., Tsuchimura, N., Pichugin, D., Lichtenecker, R. J., Vozny, O., Gunning, P., Arthanari, H., Sljoka, A., and Prosser, R. S., "Characterization of conformational states of the homodimeric enzyme fluoroacetate dehalogenase by 19 F– 13 C two-dimensional NMR", RSC Chemical Biology 5(12), 1214–1218, (2024).
- Picard, L., Orazietti, A., Tran, D. P., Tucs, A., Hagimoto, S., Qi, Z., Huang, S. K., Tsuda, K., Kitao, A., Sljoka, A., and Prosser, R. S., "Balancing G protein selectivity and efficacy in the adenosine A2A receptor", Nat. Chem. Biol., 1–9, (2024).
- Kozome, D., Sljoka, A., and Laurino, P., "Remote loop evolution reveals a complex biological function for chitinase enzymes beyond the active site", Nat. Commun. 15(1), 3227, (2024).
- Yuan, W., Hibi, Y., Tamura, R., Sumita, M., Nakamura, Y., Naito, M., and Tsuda, K., "Revealing factors influencing polymer degradation with rank-based machine learning", Patterns 4(12), 100846, (2023).
- Yoshida, T., Hanada, H., Nakagawa, K., Taji, K., Tsuda, K., and Takeuchi, I., "Efficient model selection for predictive pattern mining model by safe pattern pruning", Patterns 4(12), 100890, (2023).
- Tučs, A., Berenger, F., Yumoto, A., Tamura, R., Uzawa, T., and Tsuda, K., "Quantum Annealing Designs Nonhemolytic Antimicrobial Peptides in a Discrete Latent Space", ACS Med. Chem. Lett. 14(5), 577–582, (2023).
- Terayama, K., Osaki, Y., Fujita, T., Tamura, R., Naito, M., Tsuda, K., Matsui, T., and Sumita, M., "Koopmans’ Theorem-Compliant Long-Range Corrected (KTLC) Density Functional Mediated by Black-Box Optimization and Data-Driven Prediction for Organic Molecules", J. Chem. Theory Comput. 19(19), 6770–6781, (2023).
- Tamura, R., Terayama, K., Sumita, M., and Tsuda, K., "Ranking Pareto optimal solutions based on projection free energy", Phys. Rev. Materials 7(9), 093804, (2023).
- Nguyen, D. H., and Tsuda, K., "On a linear fused Gromov-Wasserstein distance for graph structured data", Pattern Recognit. 138, 109351, (2023).
- Mao, Z., Matsuda, Y., Tamura, R., and Tsuda, K., "Chemical design with GPU-based Ising machines", Digital Discovery 2(4), 1098–1103, (2023).
- Li, J., Sumita, M., Tamura, R., and Tsuda, K., "Interpretable Fragment‐Based Molecule Design with Self‐Learning Entropic Population Annealing", Advanced Intelligent Systems 5(10), (2023).
- Ishida, S., Aasawat, T., Sumita, M., Katouda, M., Yoshizawa, T., Yoshizoe, K., Tsuda, K., and Terayama, K., "ChemTSv2: Functional molecular design using de novo molecule generator", Wiley Interdisciplinary Reviews Computational Molecular Science 13(6), (2023).
- Huang, S. K., Picard, L., Rahmatullah, R. S., Pandey, A., Van Eps, N., Sunahara, R. K., Ernst, O. P., Sljoka, A., and Prosser, R. S., "Mapping the conformational landscape of the stimulatory heterotrimeric G protein", Nat. Struct. Mol. Biol., 1–10, (2023).
- Tokuhisa, A., Akinaga, Y., Terayama, K., Okamoto, Y., and Okuno, Y., "Single-Image Super-Resolution Improvement of X‑ray Single-Particle Diffraction Images Using a Convolutional Neural Network", J. Chem. Inf. Model. 62(14), 3352–3364, (2022).
- Tamura, R., Sumita, M., Terayama, K., Tsuda, K., Izumi, F., and Matsushita, Y., "Automatic Rietveld refinement by robotic process automation with RIETAN-FP", Science and Technology of Advanced Materials Methods 2(1), 435–444, (2022).
- Sumita, M., Terayama, K., Tamura, R., and Tsuda, K., "QCforever: A Quantum Chemistry Wrapper for Everyone to Use in Black-Box Optimization", J. Chem. Inf. Model., (2022).
- Sumita, M., Terayama, K., Suzuki, N., Ishihara, S., Tamura, R., Chahal, M. K., Payne, D. T., Yoshizoe, K., and Tsuda, K., "De novo creation of a naked eye–detectable fluorescent molecule based on quantum chemical computation and machine learning", Sci. Adv. 8, eabj3906, (2022).
- Kumawat, N., Tucs, A., Bera, S., Chuev, G. N., Valiev, M., Fedotova, M. V., Kruchinin, S. E., Tsuda, K., Sljoka, A., and Chakraborty, A., "Site Density Functional Theory and Structural Bioinformatics Analysis of the SARS-CoV Spike Protein and hACE2 Complex", Molecules 27(3), (2022).
- Huang, S. K., Almurad, O., Pejana, R. J., Morrison, Z. A., Pandey, A., Picard, L., Nitz, M., Sljoka, A., and Prosser, R. S., "Allosteric modulation of the adenosine A(2A) receptor by cholesterol", eLife 11, (2022).
- Fujita, T., Terayama, K., Sumita, M., Tamura, R., Nakamura, Y., Naito, M., and Tsuda, K., "Understanding the evolution of a de novo molecule generator via characteristic functional group monitoring", Sci. Technol. Adv. Mater. 23(1), 352–360, (2022).
- Besaw, J. E., Reichenwallner, J., De Guzman, P., Tucs, A., Kuo, A., Morizumi, T., Tsuda, K., Sljoka, A., Miller, R. J., and Ernst, O. P., "Low pH structure of heliorhodopsin reveals chloride binding site and intramolecular signaling pathway", Sci. Rep. 12(1), 13955, (2022).
- Baksh, K. A., Augustine, J., Sljoka, A., Prosser, R. S., and Zamble, D. B., "Mechanistic insights into the nickel-dependent allosteric response of the Helicobacter pylori NikR transcription factor", J. Biol. Chem. 299(1), 102785, (2022).
- Zhang, Y., Zhang, J., Suzuki, K., Sumita, M., Terayama, K., Li, J., Mao, Z., Tsuda, K., and Suzuki, Y., "Discovery of polymer electret material via de novo molecule generation and functional group enrichment analysis", Appl. Phys. Lett. 118, 223904, (2021).
- Tran, D. P., Tada, S., Yumoto, A., Kitao, A., Ito, Y., Uzawa, T., and Tsuda, K., "Using molecular dynamics simulations to prioritize and understand AI‑generated cell penetrating peptides", Sci. Rep. 11, 10630, (2021).
- Terayama, K., Sumita, M., Katouda, M., Tsuda, K., and Okuno, Y., "Efficient Search for Energetically Favorable Molecular Conformations against Metastable States via Gray-Box Optimization", J. Chem. Theory Comput. 17, 5419–5427, (2021).
- Sun, X., Tamura, R., Sumita, M., Mori, K., Terayama, K., and Tsuda, K., "Integrating Incompatible Assay Data Sets with Deep Preference Learning", ACS Med. Chem. Lett. 13, 70–75, (2021).
- Sumita, M., and Yoshikawa, N., "Augmented Lagrangian method for spin-coupled wave function", Int. J. Quantum Chem., (2021).
- Saito, Y., Oikawa, M., Sato, T., Nakazawa, H., Tomoyuki, I., Kameda, T., Tsuda, K., and Umetsu, M., "Machine-Learning-Guided Library Design Cycle for Directed Evolution of Enzymes: The Effects of Training Data Composition on Sequence Space Exploration", ACS Catal. 11, 14615–14624, (2021).
- Nojima, S., Terayama, K., Shimoura, S., Hijiki, S., Nonomura, N., Morii, E., Okuno, Y., and Fujita, K., "A deep learning system to diagnose the malignant potential of urothelial carcinoma cells in cytology specimens", Cancer Cytopathol 129(12), 984–995, (2021).
- Izawa, H., Yasufuku, F., Nokami, T., Ifuku, S., Saimoto, H., Matsui, T., Morihashi, K., and Sumita, M., "Unique Photophysical Properties of 1,8-Naphthalimide Derivatives: Generation of Semi-stable Radical Anion Species by Photo-Induced Electron Transfer from a Carboxy Group", ACS Omega 6(20), 13456–13465, (2021).
- Huang, S. K., Pandey, A., Duy Phuoc Tran, Villanueva, N. L., Kitao, A., Sunahara, R. K., Sljoka, A., and Prosser, R. S., "Delineating the conformational landscape of the adenosine A(2A) receptor during G protein coupling", Cell 184(7), 1884–+, (2021).
- Fowler, N. J., Sljoka, A., and Williamson, M. P., "The accuracy of NMR protein structures in the Protein Data Bank", Structure 29(12), 1430–+, (2021).
- Das, J. K., Thakuri, B., MohanKumar, K., Roy, S., Sljoka, A., Sun, G., and Chakraborty, A., "Mutation-Induced Long-Range Allosteric Interactions in the Spike Protein Determine the Infectivity of SARS-CoV-2 Emerging Variants", ACS Omega 6(46), 31305–31320, (2021).