ジャーナル論文 / Journal
  1. Zhang, J., Suganuma, M., and Okatani, T., "Network Pruning and Fine-tuning for Few-shot Industrial Image Anomaly Detection", 2023 IEEE 21st International Conference on Industrial Informatics (INDIN) 00, 1–6, (2023).
  2. Wang, Z., Liu, X., Suganuma, M., and Okatani, T., "Unsupervised domain adaptation for semantic segmentation via cross-region alignment", Comput. Vision Image Understanding 234, 103743, (2023).
  3. Kunlamai, T., Yamane, T., Suganuma, M., Chun, P., and Okatani, T., "Improving visual question answering for bridge inspection by pre‐training with external data of image–text pairs", Computer‐Aided Civil and Infrastructure Engineering 39(3), 345–361, (2023).
  4. Zhu, Y., Sekiya, H., Okatani, T., Yoshida, I., and Hirano, S., "Real-time vehicle identification using two-step LSTM method for acceleration-based bridge weigh-in-motion system", Journal of Civil Structural Health Monitoring 12(3), 689–703, (2022).
  5. Nagatani, K., Abe, M., Osuka, K., Chun, P., Okatani, T., Nishio, M., Chikushi, S., Matsubara, T., Ikemoto, Y., and Asama, H., "Innovative technologies for infrastructure construction and maintenance through collaborative robots based on an open design approach", Adv. Rob., (2021).
国際会議 / Proceedings
  1. Tanaka, Y., Yoshida, S. M., Shibata, T., Terao, M., Okatani, T., and Sugiyama, M., "Appearance-based curriculum for semi-supervised learning with multi-angle unlabeled data", the IEEE Winter Conference on Applications of Computer Vision (WACV2024), 2780–2789, (2024).
  2. Van-Quang, N., Suganuma, M., and Okatani , T., "GRIT: Faster and Better Image-captioning Transformer Using Dual Visual Features", Proceedings of European Confrence on Computer Vision, (2022).
  3. Tran, H. T., and Okatani, T., "Bright as the Sun: In-depth Analysis of Imagination-Driven Image Captioning", Proceedings of Asian Conference on Computer Vision, 675–691, (2022).
  4. Liu, S., and Okatani, T., "Symmetry-aware Neural Architecture for Embodied Visual Navigation", Proceedings of Computer Vision and Pattern Recognition, (2022).
  5. Liu, K., Suganuma, M., and Okatani, T., "Bridging the Gap from Asymmetry Tricks to Decorrelation Principles in Non-contrastive Self-supervised Learning", Advances in Neural Information Processing Systems 35 (NeurIPS 2022), (2022).
  6. Ye, Q., Suganuma, M., and Okatani, T., "Progressive and Selective Fusion Network for High Dynamic Range Imaging", Proceedings of ACM Multimedia, 5290–5297, (2021).
  7. Tanaka, T., Sasagawa, Y., and Okatani, T., "Learning To Bundle-Adjust: A Graph Network Approach to Faster Optimization of Bundle Adjustment for Vehicular SLAM", Proceedings of the IEEE/CVF International Conference on Computer Vision, 6250–6259, (2021).
  8. Song, W., Suganuma, M., Liu, X., Simobayashi, N., Maruta, D., and Okatani, T., "Matching in the Dark: A Dataset for Matching Image Pairs of Low-light Scenes", Proceedings of the IEEE/CVF International Conference on Computer Vision, 6029–6038, (2021).
  9. Nguyen, V., Suganuma, M., and Okatani , T., "Look Wide and Interpret Twice: Improving Performance on Interactive Instruction-following Tasks", Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, 923–930, (2021).