ジャーナル論文 / Journal
- Zheng, Y., Huang, B., Chen, W., Ramsey, J., Gong, M., Cai, R., Shimizu, S., Spirtes, P., and Zhang, K., "Causal-learn: Causal Discovery in Python", J. Mach. Learn. Res. 25, 1–7, (2024).
- Zhou, X., Zheng, X., Shu, T., Liang, W., Wang, K. I., Qi, L., Shimizu, S., and Jin, Q., "Information Theoretic Learning-Enhanced Dual-Generative Adversarial Networks With Causal Representation for Robust OOD Generalization", IEEE Trans. Neural Netw. Learn. Syst. PP(99), 1–14, (2023).
- Zhou, X., Zheng, X., Cui, X., Shi, J., Liang, W., Yan, Z., Yang, L. T., Shimizu, S., and Wang, K. I., "Digital Twin Enhanced Federated Reinforcement Learning With Lightweight Knowledge Distillation in Mobile Networks", IEEE J. Select. Areas Commun. 41(10), 3191–3211, (2023).
- Zhou, X., Xu, X., Liang, W., Zeng, Z., Shimizu, S., Yang, L. T., and Jin, Q., "Intelligent Small Object Detection for Digital Twin in Smart Manufacturing With Industrial Cyber-Physical Systems.", IEEE Trans. Ind. Informatics 18(2), 1377–1386, (2022).
- Zhou, X., Liang, W., Li, W., Yan, K., Shimizu, S., and Wang, K. I., "Hierarchical Adversarial Attacks Against Graph-Neural-Network-Based IoT Network Intrusion Detection System.", IEEE Internet Things J. 9(12), 9310–9319, (2022).
- Suzuki, K., Abe, M. S., Kumakura , D., Nakaoka, S., Fujiwara , F., Miyamoto , H., Nakaguma , T., Okada , M., Sakurai , K., Shimizu , S., Iwata , H., Masuya, H., Nihei, N., and Ichihashi, Y., "Chemical-Mediated Microbial Interactions Can Reduce the Effectiveness of Time-Series-Based Inference of Ecological Interaction Networks", Int. J. Environ. Res. Public. Health 19(3), (2022).
- Maeda, T. N., and Shimizu, S., "Repetitive causal discovery of linear non-Gaussian acyclic models in the presence of latent confounders.", Int. J. Data Sci. Anal. 13(2), 77–89, (2022).
- Akamatsu, S., Terada, N., Takata, R., Kinoshita, H., Shimatani, K., Momozawa, Y., Yamamoto, M., Tada, H., Kawamorita, N., Narita, S., Kato, T., Nitta, M., Kandori, S., Koike, Y., Inazawa, J., Kimura, T., Kimura, H., Kojima, T., Terachi, T., Sugimoto, M., Habuchi, T., Arai, Y., Yamamoto, S., Matsuda, T., Obara, W., Kamoto, T., Inoue, T., Nakagawa, H., Ogawa, O., and group, o. b., "Clinical Utility of Germline Genetic Testing in Japanese Men Undergoing Prostate Biopsy", JNCI Cancer Spectrum 6(1), pkac001, (2022).
- Zeng, Y., Hao, Z., Cai, R., Xie, F., Huang, L., and Shimizu, S., "Nonlinear Causal Discovery for High-Dimensional Deterministic Data", IEEE Trans. Neural Netw. Learn. Syst., (2021).
- Maeda, T., and Shimizu, S., "Repetitive causal discovery of linear non-Gaussian acyclic models in the presence of latent confounders", International Journal of Data Science and Analytics, (2021).
国際会議 / Proceedings
- Pham, T., Shimizu, S., Hino, H., and Le, T., "Scalable counterfactual distribution estimation in multivariate causal models", Proceedings of the Third Conference on Causal Learning and Reasoning, PMLR 236, 1118–1140, (2024).
- Ishibashi, Y., Yokoi, S., Sudoh, K., and Nakamura, S., "Subspace Representations for Soft Set Operations and Sentence Similarities", Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), 3512–3524, (2024).
- Wani, S., Zhou, X., and Shimizu, S., "BiLSTM and VAE Enhanced Multi-Task Neural Network for Trust-Aware E-Commerce Product Analysis", 2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom) 00, 780–787, (2023).
- Tsuchiya, T., Ito, S., and Honda, J., "Stability-penalty-adaptive follow-the-regularized-leader: Sparsity, game-dependency, and best-of-both-worlds", Advances in Neural Information Processing Systems 36, 47406–47437, (2023).
- Tsuchiya, T., Ito, S., and Honda, J., "Further Adaptive Best-of-Both-Worlds Algorithm for Combinatorial Semi-Bandits", Proceedings of the 26th International Conference on Artificial Intelligence and Statistics (AISTATS2023), Proceedings of Machine Learning Research 206, 8117–8144, (2023).
- Lee, J., Honda, J., Chiang, C. K., and Sugiyama, M., "Optimality of Thompson sampling with noninformative priors for Pareto bandits", Proceedings of 40th International Conference on Machine Learning (ICML2023), Proceedings of Machine Learning Research 202, 18810–18851, (2023).
- Kurita, H., Kobayashi, G., Yokoi, S., and Inui, K., "Contrastive Learning-based Sentence Encoders Implicitly Weight Informative Words", In Findings of the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP2023 Findings), (2023).
- Kobayashi, G., Kuribayashi, T., Yokoi, S., and Inui, K., "Transformer Language Models Handle Word Frequency in Prediction Head", In Findings of the 61st Annual Meeting of the Association for Computational Linguistics (ACL2023 Findings), 4523–4535, (2023).
- Kikuchi, G., and Shimizu, S., "Structure Learning for Groups of Variables in Nonlinear Time-Series Data with Location-Scale Noise", Proceedings of the 2023 Causal Analysis Workshop Series, PMLR 223, 20–39, (2023).
- Jiang, Y., and Shimizu, S., "Linkages among the Foreign Exchange, Stock, and Bond Markets in Japan and the United States", Proceedings of the 2023 Causal Analysis Workshop Series, PMLR 223, 1–19, (2023).
- Arase, Y., Bao, H., and Yokoi, S., "Unbalanced Optimal Transport for Unbalanced Word Alignment", Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (ACL2023) 1, 3966–3986, (2023).
- Zeng, Y., Shimizu, S., Matsui, H., and Sun, F., "Causal Discovery for Linear Mixed Data.", CLeaR, 994–1009, (2022).
- Uemura, K., Takagi, T., Takayuki, K., Yoshida, H., and Shimizu, S., "A Multivariate Causal Discovery based on Post-Nonlinear Model.", Proceedings of the First Conference on Causal Learning and Reasoning, PMLR 177, 826–839, (2022).
- Zeng, Y., Shimizu, S., Cai, R., Xie, F., Yamamoto, M., and Hao, Z., "Causal Discovery with Multi-Domain LiNGAM for Latent Factors", Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21), (2021).
- Maeda, T., and Shimizu, S., "Causal Additive Models with Unobserved Variables", Proceedings of Machine Learning Research, (2021).
- Kiritosh, K., Izumitani, T., Koyama, K., Okawachi, T., Asahara, K., and Shimizu, S., "Estimating individual-level optimal causal interventions combining causal models and machine learning models", Proceedings of The KDD'21 Workshop on Causal Discovery, (2021).
レビュー / Review
- Kuroki, Y., Honda, J., and Sugiyama, M., "Combinatorial pure exploration with full-bandit feedback and beyond: Solving combinatorial optimization under uncertainty with limited observation", The Fields Institute Communications Series on Data Science and Optimization, (2023).