ジャーナル論文 / Journal
  1. Riou, C., Honda, J., and Sugiyam, M., "The Survival Bandit Problem", Transactions on Machine Learning Rese, 1–66, (2024).
  2. Hara, S., Matsuura, M., Honda, J., and Ito, S., "Active model selection: A variance minimization approach", Mach. Learn. 113(11), 8327–8345, (2024).
国際会議 / Proceedings
  1. Yokoyama, K., Ito, S., Matsuoka, T., Kimura, K., and Yokoo, M., "Online L♮-Convex Minimization", Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2024., 319–336, (2024).
  2. Shimizu, K., Honda, J., Ito, S., and Nakadai, S., "Learning with Posterior Sampling for Revenue Management under Time-varying Demand", Proceedings of the Thirty-ThirdInternational Joint Conference on Artificial Intelligence, 4911–4919, (2024).
  3. Ichikawa, K., Ito, S., Hatano, D., Sumita, H., Fukunaga, T., Kakimura, N., and Kawarabayashi, K., "New Classes of the Greedy-Applicable Arm Feature Distributions in the Sparse Linear Bandit Problem", Proceedings of the AAAI Conference on Artificial Intelligence 38(11), 12708–12716, (2024).
  4. Tsuchiya, T., Ito, S., and Honda, J., "Stability-penalty-adaptive follow-the-regularized-leader: Sparsity, game-dependency, and best-of-both-worlds", Advances in Neural Information Processing Systems 36, 47406–47437, (2023).
  5. Lee, J., Honda, J., and Sugiyama, M., "Thompson exploration with best challenger rule in best arm identification", Proceedings of the 15th Asian Conference on Machine Learning (ACML2023), 646–661, (2023).
  6. Ito, S., and Takemura, K., "An Exploration-by-Optimization Approach to Best of Both Worlds in Linear Bandits.", Advances in Neural Information Processing Systems 36, 71582–71602, (2023).
  7. Ito, S., Hatano, D., Sumita, H., Takemura, K., Fukunaga, T., Kakimura, N., and Kawarabayashi, K., "Bandit Task Assignment with Unknown Processing Time.", Advances in Neural Information Processing Systems Curran Associates, Inc. 36, 8937–8957, (2023).