2025/1/27 13:54

機械学習の主要なカンファレンスであるICLR 2025において、AIPセンターから25本の論文が採択されました。

参考:ICLR 2025では、約11,500本の論文投稿があり、採択率は32.08%でした。
https://iclr.cc/

[Accepted papers]

  • A Soft and Fast Pattern Matcher for Billion-Scale Corpus Searches
    Hiroyuki Deguchi (NAIST)
    Go Kamoda (Tohoku University)
    Yusuke Matsushita (Kyoto University)
    Chihiro Taguchi (University of Notre Dame)
    Kohei Suenaga (Kyoto University)
    Masaki Waga (Kyoto University)
    Sho Yokoi (NINJAL / Tohoku University / RIKEN AIP)
  • Connecting Federated ADMM to Bayes
    Siddharth Swaroop (Harvard University)
    Mohammad Emtiyaz Khan (RIKEN AIP)
    Finale Doshi-Velez (Harvard University)
  • Difference-of-submodular Bregman Divergence
    Masanari Kimura (The University of Melbourne)
    Takahio Kawashima (ZOZO Research)
    Tasuku Soma (ISM / SOKENDAI / RIKENAIP)
    Hideitsu Hino (ISM/RIKEN AIP)
  • Diffusing to the Top: Boost Graph Neural Networks with Minimal Hyperparameter Tuning.
    Lequan Lin (USYD)
    Dai Shi (USYD)
    Andi Han (RIKEN AIP)
    Zhiyong Wang (USYD)
    Junbin Gao (USYD).
  • Direct Distributional Optimization for Provable Alignment of Diffusion Models
    Ryotaro Kawata (The University of Tokyo / RIKEN AIP)
    Kazusato Oko (UC Berkeley / RIKEN AIP)
    Atsushi Nitanda (A*STAR)
    Taiji Suzuki (The University of Tokyo / RIKEN AIP)
  • Drop-Upcycling: Training Sparse Mixture of Experts with Partial Re-initialization
    Taishi Nakamura (Institute of Science Tokyo)
    Takuya Akiba (Sakana AI)
    Kazuki Fujii (Institute of Science Tokyo)
    Yusuke Oda (NII LLMC)
    Rio Yokota (Institute of Science Tokyo / NII LLMC)
    Jun Suzuki (Tohoku University / RIKEN AIP / NII LLMC)
  • Flow matching achieves almost minimax optimal convergence
    Kenji Fukumizu (The Institute of Statistical Mathematics / Preferred Networks)
    Taiji Suzuki (The University of Tokyo / RIKEN AIP)
    Noboru Isobe (The University of Tokyo)
    Kazusato Oko (UC Berkeley / RIKEN AIP)
    Masanori Koyama (Preferred Networks)
  • Improved Approximation Algorithms for k-Submodular Maximization via
    Multilinear Extension
    Huanjian Zhou (The University of Tokyo / RIKEN AIP)
    Lingxiao Huang (Nanjing University)
    Baoxiang Wang (Chinese University of Hong Kong, Shenzhen)
  • Improving Convergence Guarantees of Random Subspace Second-order Algorithm for Nonconvex Optimization
    Rei Higuchi (University of Tokyo)
    Pierre-Louis Poirion (RIKEN AIP)
    Akiko Takeda (University of Tokyo / RIKEN AIP)
  • Learning View-invariant World Models for Visual Robotic Manipulation
    Jing-Cheng Pang (Nanjing University)
    Nan Tang (Nanjing University)
    Kaiyuan Li (Nanjing University)
    Yuting Tang (University of Tokyo / RIKEN AIP)
    Xin-Qiang Cai (RIKEN AIP)
    Zhen-Yu Zhang (RIKEN AIP)
    Gang Niu (RIKEN AIP / Southeast University)
    Masashi Sugiyama (RIKEN AIP / The University of Tokyo)
    Yang Yu (Nanjing University)
  • On the feature learning in diffusion models
    Andi Han (RIKEN AIP)
    Wei Huang (RIKEN AIP)
    Yuan Cao (The University of Hong Kong)
    Difan Zou (The University of Hong Kong)
  • On the Optimization and Generalization of Two-layer Transformers with Sign Gradient Descent
    Bingrui Li (Tsinghua University)
    Wei Huang (RIKEN AIP)
    Andi Han (RIKEN AIP)
    Zhangpeng Zhou (Shanghai Jiao Tong University)
    Taiji Suzuki (The University of Tokyo / RIKEN AIP)
    Jun Zhu (Tsinghua University)
    Jianfei Chen (Tsinghua University)
  • Optimality and Adaptivity of Deep Neural Features for Instrumental
    Variable Regression
    Juno Kim (The University of Tokyo / RIKEN AIP)
    Dimitri Meunier (University College London)
    Arthur Gretton (University College London)
    Taiji Suzuki (The University of Tokyo / RIKEN AIP)
    Zhu Li (University College London)
  • PLENCH: Realistic Evaluation of Deep Partial-Label Learning Algorithms
    Wei Wang (The University of Tokyo / RIKEN AIP)
    Dong-Dong Wu (Mohamed bin Zayed University of Artificial Intelligence)
    Jindong Wang (William & Mary)
    Gang Niu (RIKEN AIP / Southeast University)
    Min-Ling Zhang (Southeast University)
    Masashi Sugiyama (RIKEN AIP / The University of Tokyo)
  • Sharpness-Aware Black-Box Optimization
    Feiyang Ye (University of Technology Sydney / RIKEN AIP) **
    Yueming Lyu (A*STAR)
    Xuehao Wang (Southern University of Science and Technology)
    Masashi Sugiyama (RIKEN AIP / The University of Tokyo)
    Yu Zhang (Southern University of Science and Technology)
    Ivor Tsang (A*STAR)
  • Sketch2Diagram: Generating Vector Diagrams from Hand-Drawn Sketches
    Itsumi Saito (Tohoku University / RIKEN AIP)
    Haruto Yoshida (Tohoku University)
    Keisuke Sakaguchi (Tohoku University / RIKEN AIP)
  • State Space Models are Provably Comparable to Transformers in Dynamic
    Token Selection
    Naoki Nishikawa (The University of Tokyo / RIKEN AIP)
    Taiji Suzuki (The University of Tokyo / RIKEN AIP)
  • TAID: Temporally Adaptive Interpolated Distillation for Efficient Knowledge Transfer in Language Models
    Makoto Shing (Sakana AI)
    Kou Misaki (Sakana AI)
    Han Bao (Kyoto University)
    Sho Yokoi (NINJAL / Tohoku University / RIKEN AIP)
    Takuya Akiba (Sakana AI)
  • T2V2: A Unified Non-Autoregressive Model for Speech Recognition and Synthesis via
    Multitask Learning
    Nabarun Goswami (The University of Tokyo)
    Hanqin Wang (The University of Tokyo)
    Tatsuya Harada (The University of Tokyo/RIKEN AIP)
  • The Adaptive Complexity of Log-Concave Sampling
    Huanjian Zhou (The University of Tokyo / RIKEN AIP)
    Baoxiang Wang (Chinese University of Hong Kong, Shenzhen)
    Masashi Sugiyama (RIKEN AIP / The University of Tokyo)
  • Towards Effective Evaluations and Comparison for LLM Unlearning Methods
    Qizhou Wang (Hong Kong Baptist University / RIKEN AIP)*
    Bo Han (Hong Kong Baptist University/RIKEN AIP)
    Puning Yang (Hong Kong Baptist University)
    Jianing Zhu (Hong Kong Baptist University)
    Tongliang Liu (The University of Sydney / RIKEN AIP / Mohamed bin Zayed University of Artificial Intelligence)
    Masashi Sugiyama (RIKEN AIP / The University of Tokyo)
  • Towards Out-of-Modal Generalization without Instance-level Modal Correspondence
    Zhuo Huang (University of Sydney)
    Gang Niu (RIKEN AIP / Southeast University)
    Bo Han (Hong Kong Baptist University / RIKEN AIP)
    Masashi Sugiyama (RIKEN AIP / The University of Tokyo)
    Tongliang Liu (The University of Sydney / RIKEN AIP / Mohamed bin Zayed
    University of Artificial Intelligence)
  • Transformers Provably Solve Parity Efficiently with Chain of Thought
    Juno Kim (The University of Tokyo / RIKEN AIP)
    Taiji Suzuki (The University of Tokyo / RIKEN AIP)
  • Weighted Point Cloud Embedding for Multimodal Contrastive Learning
    Toward Optimal Similarity Metric
    Toshimitsu Uesaka (Sony AI)
    Taiji Suzuki (The University of Tokyo / RIKEN AIP)
    Yuhta Takida (Sony AI)
    Chieh-Hsin Lai (Sony AI)
    Naoki Murata (Sony AI)
    Yuki Mitsufuji (Sony AI / Sony Group Corporation)
  • When Graph Neural Networks Meet Dynamic Mode Decomposition.
    Dai Shi (USYD)
    Lequan Lin (USYD)
    Andi Han (RIKEN AIP)
    Zhiyong Wang (USYD)
    Yi Guo (Western Sydney University)
    Junbin Gao (USYD).

*Intern at RIKEN AIP
**Trainee at RIKEN AIP

関連研究室

last updated on 2025/1/29 17:07研究室
last updated on 2025/1/17 10:37研究室
last updated on 2025/1/17 10:40研究室
last updated on 2025/1/17 10:43研究室
last updated on 2025/1/17 10:34研究室
last updated on 2024/10/17 09:32研究室